
Parallel Programming and Languages

Moderator: Henry Dietz[0000-0002-5878-881X]

Panelists: Frithjof Gressman, Mark Marron, Rudolf Eigenmann

University of Kentucky, Lexington KY 40506, USA
hankd@engr.uky.edu

Abstract. Thirty-six years ago, when this workshop series was born, “lan-
guages” was given top billing in the name: Languages and Compilers for Paral-
lel Computing. Within this speedup-oriented parallel-processing community,
there was a strong belief that parallel programming was more difficult than it
should be, and that new parallel programming languages would play a leading
role in making parallel programming a skill that all programmers would be able
to claim. However, that is not how things have progressed. Parallel program-
ming languages have not become dominant. Not only is parallel programming
rarely taught in introductory programming courses, but it is common that the
only parallel programming language undergraduate students are required to
write programs in is Verilog, which is intended to be a hardware description
and simulation language. Arguably, parallel programming has become even
more difficult as computer architectures have evolved into heterogeneous struc-
tures and programming has often degenerated into using languages like Python
to create larger applications by “duct taping” existing “black box” applications
together. This panel examines how programming languages and libraries could
deliver on the promise of making efficient parallel programs easy to construct
and debug.

Keywords: Parallel Programming, Programming Language, Libraries, Software
Tools, Software Engineering, Parallel Architecture.

1 Introduction

This panel is bringing together … to discuss how programming languages, and more
broadly libraries and software tools, can qualitatively simplify parallel programming.

The panel discussion at LCPC (and this paper) begins with a brief introduction by
the moderator followed by ten-minute position presentations from each of the pan-
elists. Each panelist independently determines the content of their position presenta-
tion and submits a section for this paper after the workshop. To ensure collection of
opinions on some specific topics, the moderator prepared and distributed this “Intro-
duction” section of the paper before the workshop, giving three prompts to be ad-
dressed by each panelist. The conclusion is written by the moderator after the work-
shop, summarizing the discussion that followed the position presentations.

2

1.1 Getting Started in Parallel Programming

There is a very old joke in this field that there is something wrong when it takes a
PhD to write an optimized matrix multiply routine for a particular parallel computer
and you can earn a PhD for doing just that. Four decades later, that joke still is not
funny, but remains disturbingly close to reality. Computing Curricula 2020 (CC2020)
from ACM and the IEEE computer society[1] lists “Parallel and Distributed Comput-
ing” as area 3.4 within “Systems Architecture and Infrastructure.” Thus, parallel pro-
gramming is a skill that graduates of an undergraduate program in either Computer
Engineering or Computer Science are theoretically expected to have. Unfortunately, it
is clear that very few students are comfortable with parallel programming by the time
they graduate.

Thus, the first prompt given to the panelists is:

What should parallel programming languages or libraries do differ-
ently in order to make parallel programming accessible to all pro-
grammers? Put another way, how can the core skills of parallel pro-
gramming be simplified enough to be presented to students in an in-
troductory programming class?

1.2 Dealing with Parallel Heterogeneity

Every computer programmer has heard of Moore’s Law[2], but many fail to appreci -
ate all that it means. Fundamentally, the exponential growth over time in the number
of circuit elements that can be cost-effectively placed on a chip is a key reason that
speedup tends to come from parallel processing. However, the fact that power con-
sumption per unit circuitry has not been decreasing as quickly has led to the concepts
of so-called “dark silicon”: the idea that building somewhat specialized hardware that
is only powered and used when appropriate can give significant improvements in per-
formance. The low cost in adding specialized attached processors to a system is why
most computers now have GPUs… and might be why future systems have attached
quantum computing systems.

However, most parallel programming languages have been designed to only target
a specific flavor of parallel architecture. For example, CUDA primarily targets GPUs,
and especially those marketed by NVIDA. The result has been that programming to
use all the heterogeneous types of parallelism supported by the hardware often means
awkwardly interfacing multiple different programming environments.

Thus, the second prompt given to the panelists is:

Not only supercomputers, but even cell phones, now have heteroge-
neous parallel architectures including multi-core processors and
GPUs. How should programming languages and libraries deal with
heterogeneous parallel target architectures?

3

1.3 Duct Tape Holding Black Boxes Together

As a computer engineering systems researcher, it used to be that there were multi-
tudes of potential collaborators always lined up to leverage our new systems technolo-
gies to speed up their applications. However, as core application codes became stable,
and then in many cases became commercial and proprietary products, it became in-
creasing common that developing a new application was mostly about how to control
execution and feeding of data between “black box” programs available only as exe-
cutable code images. Similarly, going back to the matrix multiply routine mentioned
above, the truth is most programmers will not write their own code for such things,
but simply call a library routine which is often vendor-provided proprietary code. In
sum, most programs are not written from scratch any more, but are created bottom-up
from existing code.

Thus, the third and final prompt given to the panelists is:

Programming now rarely means writing a program from scratch, and
often involves controlling execution of already-compiled programs as
modules within a new program. Are there language, library, or soft-
ware tool mechanisms that can help manage the parallelism in pro-
grams constructed from “black box” components, making these types
of programs easier to write and maintain?

The following sections are provided by each of the panelists to summarize their re-
sponses to the above prompts and to generally state their position with respect to the
future of parallel programming and languages.

2 Panelist: ...

Position statement contributed by each panelist...

5 Conclusion

To be written by the moderator after the panel.

References

1 CC2020 Task Force, Computing Curricula 2020: Paradigms for Global Computing Educa-
tion, Association for Computing Machinery, New York, NY, USA, ISBN 9781450390590
(2020), DOI 10.1145/3467967

2 R. R. Schaller, "Moore's law: past, present and future," in IEEE Spectrum, vol. 34, no. 6,
pp. 52-59, June 1997, doi: 10.1109/6.591665.

	1 Introduction
	1.1 Getting Started in Parallel Programming
	1.2 Dealing with Parallel Heterogeneity
	1.3 Duct Tape Holding Black Boxes Together

	2 Panelist: ...
	5 Conclusion
	References

