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Abstract. Machine learning frameworks rely on vendor libraries or auto-tuning frameworks
for high-performance implementations of key operators like matrix multiplication and convo-
lution. The Transform dialect has recently been developed in the MLIR framework in order
to facilitate the composition of transformations to implement optimized schedules for tensor
computations. However, its use by users is non-trivial. In this paper, we describe a higher level
scheduling language PEAK that is built on top of the MLIR Transform dialect to ease the
process of developing optimized schedules for deep learning operators on GPUs. PEAK ex-
presses a simplified interface to represent schedules in the MLIR/IREE compiler by exploiting
domain-specific properties about data reuse in computation-intensive operations, determin-
ing thread mapping strategies, and staging data through the GPU memory hierarchy. PEAK
integrates an autotuner to explore implementations of high-performance code with sched-
ules based on the MLIR Transform Dialect. PEAK enables a significant reduction of effort
to construct high-performance GPU code using MLIR. A comparison with the state-of-the-
art TVM/Ansor autotuning compiler framework shows higher performance for matrix-vector
products, nearly comparable performance for matrix-matrix multiplication, but lower perfor-
mance for convolutions. The paper presents insights into the limitations of the MLIR/IREE
infrastructure that currently impact the performance achievable with PEAK.
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1 Introduction

The convolution operator is a core component in Convolutional Neural Networks (CNNs), and
matrix-matrix multiplication is a fundamental operation in transformer networks used in Large
Language Models. Optimizing these two operators for GPUs is a very challenging task. Vendor
libraries like cuDNN [10] and cuBLAS [18] are engineered by GPU experts to be well-matched to
low-level architectural features and achieve performance close to machine peak for sufficiently large
problem sizes. However, for the actual sizes/shapes of convolution operators found in practically
used CNN image processing pipelines like ResNet [14] and Yolo [20], the achieved performance is
often lower than that achieved by state-of-the-art autotuning frameworks like AutoTVM [9] and
Ansor [26]. Further, the manual implementation of high-performance vendor libraries or specific
kernel design solutions [16,24] requires a deep understanding of low-level features of hardware and
very significant time investments from expert engineers. Therefore, there is a significant interest
in developing frameworks to ease the development of optimized implementations of key machine
learning operators for GPUs.

* These authors contributed equally to this work
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A scheduling language enables performance experts to express transformation sequences to be
applied by the compiler. Schedules separate transformations from computation and enable modu-
lar composition of these components. An example of a framework providing a scheduling language
is TVM [8], which is a state-of-the-art deep-learning compiler that supports auto-tuning in Au-
toTVM [9] and Ansor [26]. Automatic code generators which feature scheduling languages have
demonstrated effectiveness in achieving high performance as well as performance portability across
multiple hardware platforms [6–8,11,12,15,19,22,25,27].

The MLIR (Multi-Level Intermediate Representations) [17] compiler infrastructure has been
developed to facilitate layered implementation of compiler optimization passes using multiple lev-
els of IR (Internal Representation) appropriate for lowering from high-level tensor expressions to
multi-level tiled parallel code for different hardware platforms. A recent development is the cre-
ation of a transform dialect [3] in MLIR to enable effective composition of transformations such as
tiling, unrolling, vectorization, etc. However, it is not easily usable by users developing optimization
strategies for transforming tensor computations. In this paper, we develop a higher level scheduling
language called PEAK implemented on top of the MLIR transform dialect, intended to provide
greater flexibility and ease of development of optimization strategies in MLIR. We conduct experi-
ments comparing with the state-of-the-art TVM/Ansor auto-tuning compiler and present observa-
tions on some of the current challenges to achieving comparable performance in the MLIR/IREE [1]
ecosystem.

The key contributions of this work are:

– We introduce a novel High-level Domain Specific Scheduling Language, PEAK, enabling source-
to-source mapping to the transform dialect to ease generating Transform dialect schedules and
hide low-level MLIR-specific details from developers.

– We integrate and demonstrate the effectiveness of autotuning in the MLIR/IREE ecosystem,
facilitating the automatic discovery of high-performance code configurations for GPUs.

– We present an experimental evaluation against the state-of-the-art TVM/Ansor autotuning
compiler for multiple problem sizes with a number of different deep learning operators, including
GEMM, Transposed GEMM, matrix-vector multiplication, 1D, and 2D convolutions.

The rest of the paper is organized as follows. Section 2 provides some background and motivates
this work. Section 3 presents the overall design and presents implementation details. Section 4
describes the optimizations that enable improved performance over code generated by the current
MILR/IREE pipeline. Experimental results and evaluations are presented in Section 5. Section 6
concludes the paper.

2 Background and Motivation

MLIR is a cross-domain compiler framework that allows users to reuse and extend existing compiler
infrastructures. MLIR provides a declarative system for defining dialects to support high-level ab-
stractions and domain-specific constructs and focuses on designing a set of modular libraries. The
dialects in MLIR show a great degree of flexibility and performance portability. MLIR supports
various backend architectures and progressive lowering of Intermediate Representation (IR), which
makes it not limited to the DL/ML applications but any tensor computations.

Transform dialect is a scheduling language inside MLIR that is divided into two parts: the
payload IR and the transform IR. The payload IR represents the input computations, while the
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transform IR encapsulates the transformations to be applied. Through a dialect extension mecha-
nism in the transform dialect, researchers and users can introduce new operations targeting specific
dialects, such as gpu, vector, and linalg dialects.

However, working with the transform dialect directly can be challenging due to its low-level IR-
based nature, which requires a deep understanding of MLIR internals. Also, researchers and users are
required to have specific knowledge of pre-conditions and post-conditions before creating and using
transformations to avoid breaking the interfaces over transform dialect operations. We demonstrate
matrix multiplication (Matmul) as an example to illustrate how users write a transform dialect and
how it generates GPU-targeted code. In the MLIR code shown in Listing 1.1, we express a Matmul
operation for 1024x1024 and 1024x1024 input sizes. In this code, we utilize the linalg.matmul

operator from the linalg dialect, specifically designed for matrix multiplication.

1 !A_t = tensor <1024 x1024xf32 >

2 !B_t = tensor <1024 x1024xf32 >

3 !C_t = tensor <1024 x1024xf32 >

4

5 func.func @linalg_matmul(

6 %A : !A_t , %B : !B_t , %C : !C_t) -> !C_t {

7 %0 = linalg.matmul ins(%A, %B : !A_t , !B_t)

8 outs(%C : !C_t) -> !C_t

9 return %0 : !C_t

10 }

Listing 1.1: Matmul in MLIR

As shown on the left side of Figure 1, transform dialect allows us to express a sequence of trans-
formations for specific optimizations. However, manually writing schedules using transform dialects
is not a simple task, and the original transform dialect is sophisticated and contains massive low-
level details. Each colored code block shows a snippet of code that does independent computation.
The code Block 5 generates vector instructions showcasing the complex low-level IR details featur-
ing types, implementation details, and operations in transform dialect. The code tries to look for
MILR construct func.func in the payload and apply predefined patterns on the operator handle;
next, transform.structured.vectorize performs vectorization and post-processing using prede-
fined patterns. To complete the end-to-end matrix multiplication, it is necessary to carry out these
steps consecutively, as depicted in blocks numbered from 1 to 8.

Transform dialect is useful for composing commands and is valuable for crafting scheduling
languages. However, from the users’ and developers’ standpoint, writing schedules with an abstrac-
tion layer placed on top of the transform dialect in a more manageable method is critical. On the
right side of Figure 1, we introduce PEAK. As demonstrated above, 30 operations in the original
transform dialect on the left side are equivalent to 10 commands in PEAK on the right. PEAK
accomplishes the same optimizations as transform dialect code on the left side while avoiding the
complexities, illustrating a more straightforward mapping of these constructs.

3 PEAK

PEAK aims to simplify writing transform dialect IR, which enables scheduling in MLIR. PEAK
makes it easier for performance experts to experiment and tweak pass pipelines in production-level
compilers. This high-level interface provides a way to integrate the auto-tuner into MLIR.
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%0 = transform.structured.match ops{["linalg.matmul"]} in %variant_op : (!transform.any_op) -> !transform.any_op CodeGen codeGen("matmul_gpu_spec_tvm.mlir"); 
auto matmul_handle= 
codeGen.findOp("linalg.matmul"); 

1) Get a handle to matmul

%1, %2 = transform.structured.tile_to_forall_op %0 num_threads [7, 14]  {mapping = [#gpu.block<x>,#gpu.block<y>] }: 
(!transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.iree.populate_workgroup_count_region_using_num_threads_slice %1 : (!transform.any_op) -> () auto outTiledBlock = codeGen.tileForGrids( 

matmul_handle,
/*Tiling*/{BX, BY}, 
/*Mapping*/{GPUBlock::X, GPUBlock::Y});

2) Tile for thread blocks

%3 = transform.structured.match ops{["linalg.matmul"]} in %variant_op : (!transform.any_op) -> !transform.any_op
%4, %5 = transform.structured.tile_to_scf_for %3 [0, 0, 512] : (!transform.any_op) -> 
(!transform.any_op,!transform.any_op)
%6, %7, %8 = transform.iree.promote_operands %4 [0, 1] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, 
!transform.any_op) auto outTiledReduction = 

codeGen.tile(outTiledBlock[0],/*Tiling*/{0, 0, TK}); 
auto outPromote
=codeGen.promote(outTiledReduction[0],{0, 1});

3) Tile for shared memory

%9, %10 = transform.structured.tile_to_forall_op %6 num_threads [32, 4] { mapping = [#gpu.thread<x>,#gpu.thread<y>] }: 
(!transform.any_op) -> (!transform.any_op, !transform.any_op)

auto outTiledThread = codeGen.tileForGrids( 
outPromote[0], /*Tiling*/ {TX, TY}, 
/*Mapping*/{GPUThread::X,GPUThread::Y}); 

4) Tile for threads

%11 = transform.structured.match ops{["linalg.matmul"]} in %variant_op : (!transform.any_op) -> !transform.any_op
%12 = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
transform.apply_patterns to %12 {
transform.apply_patterns.iree.fold_reshape_into_tensor_hal_interface
transform.apply_patterns.linalg.fold_unit_extent_dims_via_slices

transform.apply_patterns.vector.cast_away_vector_leading_one_dim
} : !transform.any_op
%13 = transform.structured.vectorize %12 : (!transform.any_op) -> !transform.any_op
transform.apply_patterns to %variant_op {
transform.apply_patterns.iree.fold_fill_into_pad
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.scf.for_loop_canonicalization
transform.apply_patterns.canonicalization
} : !transform.any_op
transform.iree.apply_licm %variant_op : !transform.any_op
transform.iree.apply_cse %variant_op : !transform.any_op

codeGen.vectorize(); 

5) Vectorization

%15 = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
transform.structured.hoist_redundant_tensor_subsets %15 : (!transform.any_op) -> ()
transform.apply_patterns to %variant_op {
transform.apply_patterns.iree.fold_fill_into_pad
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.scf.for_loop_canonicalization
transform.apply_patterns.canonicalization
} : !transform.any_op
transform.iree.apply_licm %variant_op : !transform.any_op
transform.iree.apply_cse %variant_op : !transform.any_op
%14 = transform.iree.bufferize { target_gpu } %variant_op : (!transform.any_op) -> (!transform.any_op)
%16 = transform.structured.match ops{["func.func"]} in %14 : (!transform.any_op) -> !transform.any_op
transform.iree.erase_hal_descriptor_type_from_memref %16 : (!transform.any_op) -> ()
transform.iree.apply_buffer_optimizations %16 : (!transform.any_op) -> ()
%17 = transform.structured.match ops{["func.func"]} in %14 : (!transform.any_op) -> !transform.any_op
transform.apply_patterns to %17 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.memref.fold_memref_alias_ops
transform.apply_patterns.canonicalization
} : !transform.any_op

codeGen.bufferize(); 

6) Converting tensors to memrefs (materialization)

transform.iree.forall_to_workgroup %17 : (!transform.any_op) -> ()
%18 = transform.structured.match ops{["func.func"]} in %14 : (!transform.any_op) -> !transform.any_op
transform.iree.map_nested_forall_to_gpu_threads %18 workgroup_dims = [32, 4, 1] : (!transform.any_op) -> ()

codeGen.parallelizeForBlocks(); 
codeGen.parallelizeForThreads(/*block_dim*/{TX, TY, 
1});

7) Generate parallel constructs based on thread and 
block index

transform.apply_patterns to %14 {
transform.apply_patterns.linalg.tiling_canonicalization
transform.apply_patterns.memref.fold_memref_alias_ops
transform.apply_patterns.canonicalization
} : !transform.any_op
transform.iree.apply_licm %14: !transform.any_op
transform.iree.apply_cse %14 : !transform.any_op
%19 = transform.structured.match ops{["func.func"]} in %14 : (!transform.any_op) -> !transform.any_op
transform.iree.hoist_static_alloc %19 : (!transform.any_op) -> ()
}

codeGen.end();

8) Finalizing codegen

Transform Dialect Peak

Fig. 1: Mapping of Transform dialect to PEAK for GEMM schedule
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Figure 2 demonstrates the overall design of the PEAK as a DSL leveraging the transform dialect
in MLIR that provides a minimal set of scheduling primitives. Users express their optimization
strategy in PEAK, containing tiling, vectorization, memory promotion, etc. The user interacts with
PEAK by constructing schedules using the primitives. The details about them are presented in
subsection 3.1. The autotuner is integrated into PEAK to enable tile size searching and selection
based on schedules generated by PEAK on GPU. A huge combination of choices exists for multi-
level tile sizes, determining the size/shape of thread blocks, work distribution among warps in a
thread block, and the size/shape of register tiles at each thread. Next, PEAK lowers the schedule
primitives, and tile size values are selected by autotuner to generate the corresponding transform
dialect. Finally, the computation and the transform dialect IR generated by PEAK are passed to
the MLIR/IREE compiler to generate a binary for the target architecture.

Computation 
Expression in High 

Level IR

MLIR 
Transform Dialect

Schedule Generator

MLIR/IREE 
Compiler

PEAK Schedule

User Input 
Computation

PEAK Compilation Flow

Autotuner

Executable

Fig. 2: Overview of PEAK in MLIR

3.1 Scheduling Primitives

PEAK encapsulates complicated optimization strategies as scheduling primitives in the minimal
set to avoid semantic ambiguity. We’ve chosen these specific commands because they serve as
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fundamental building blocks. By combining them, users can create complex scheduling scripts in
PEAK. This level of abstraction aligns well with our goals and ensures that users only need to know
the essential parameters, keeping the underlying complexity hidden. Our inspiration for PEAK
comes from the challenges encountered when working with the transform dialect. We listed the
essential scheduling primitives with a brief explanation in our DSL in Table 1.

Table 1: List of PEAK Scheduling Commands and Descriptions
No. Command Description

1 findOp Find a specific operation and return Op handle

2 tile Divide a computation into smaller blocks

3 fuse Combine multiple operations into a single entity

4 tileForGrids Divide computations for specific grid structures

5 parallelizeForBlocks Parallelism at the thread block level in GPU

6 parallelizeForThreads Parallelism at the thread level in GPU

7 bufferize Materialize tensor data types into memref

8 promote Move data in memory hierarchy

9 unroll Unroll loops for given unrolling factor

10 vectorize Generate vector instructions for computation

Case study of Scheduling Primitives We use Matmul as a case study to explain the succinctness
of scheduling primitives in PEAK. The right-hand side in Figure 1 shows a matrix multiplication
scheduling example written in PEAK according to the default implementation in the original MLIR
transform dialect.

The full PEAK code for Matmul is shown on the right-hand side in Figure 1. In the Matmul
operator, I and J are parallel dimensions, and K is the reduction dimension.

C [i, j] =
∑
k

A[i, k]× B [k, j] (1)

In Block 1, the name of the generated transform dialect IR is specified, and the Operator handle
of the Matmul operation is obtained. In Block 2, the computation is distributed among thread blocks
at the grid level of the GPU. The computation’s parallel dimension I, J has been tiled with grid level
tile size BX and BY and mapped over thread blocks. Block 3 specifies the tiling on the reduction
dimension K with tile size TK and marks the first and second operands for memory promotion.
In the case of GPU architecture, memory promotion means moving data from the slower GPU
global memory to the GPU shared memory with faster access time and increasing the data reuse
at the thread block level. Block 4 specifies the mapping of the remaining computation over threads
with sizes TX and TY in the view of one single thread block. Vectorization is enabled in Block 5,
where vector dialect instruction is emitted to boost the performance of generated code. Until this
point, the input data of the operator is represented as a tensor data type in MLIR whose lower-level
memory placement has not been determined. The tensor data type provides a convenient high-level
data buffer view for the user and developer and avoids complicated manual memory management.
The bufferize in Block 6 handles memory allocation and deallocation of data of operands and
output of the operator. The memory promotion in Block 3 is managed explicitly in this step, and
the data is placed into the GPU-shared memory. Block 7 shows the lowering steps necessary for
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generating parallel constructs in MLIR. The last block in the code finalizes the code generation at
the PEAK level.

In Fig. 1, our approach differs from the traditional method of tiling each dimension for blocks,
threads, and shared memory and then reordering all the tile loops to the outer loops to distribute
them among blocks and threads. Instead, we have taken a stepwise approach by first tiling for
blocks, then shared memory, and subsequently for threads.

Compare Scheduling Primitives with TVM/Ansor We compare PEAK’s Matmul schedule
with that of TVM/Ansor [2]. Ansor automatically generates code templates and forms search space
for the computation based on a set of predefined rules. Once the template is constructed, exploring
and exploiting the search space in Ansor relies on ML techniques to find the best schedule in the
large search space.

There are several differences in the schedules of PEAK and TVM/Ansor. First, in PEAK, there
is no requirement for manually rearranging loop order because tiling allows achieving any desired
loop permutation. Reordering can be accomplished by zeroing out the loop dimension in one tiling
loop band and making loop permutation implicitly. As shown in Fig. 1, in PEAK at code blocks 2, 3,
and 4, this is achieved by using a primitive for the tiling of blocks and threads (tileForGrids) and
another primitive for tiling the reduction dimension (tile). TVM/Ansor performs loop reordering
in two ways. It has one implicit loop permutation, as we discussed above, and one explicit reorder
schedule primitive. An example of a shortened generated schedule by Ansor is shown in Listing 1.2.
First, all parallel dimensions of Matmul are tiled using split primitive at line 5, and then the loops
are reordered with reorder primitive at line 8.

Second, loop unrolling can have the same effect as doing vectorization in PEAK. In lines 18
and 19, auto unroll max step and unroll explicit pragmas indicate the loop unrolling. Instead
of using the unrolling primitive in Ansor schedule, PEAK uses the vectorize primitive to issue
vector instruction in transform dialect and generate efficient code as shown in code block 5. Third,
data is staged in shared memory by using primitive cache read shown at line 10 in Listing 1.2.
However, in PEAK, this is done using a primitive (promote) to mark the operands to the shared
memory, and PEAK generates vectorized memory transfers automatically if possible. Fourth, loops
are coalesced/collapsed into one single loop using fuse primitive (line 13). The parallel loops are
mapped to either thread block or grid level on GPU using bind primitive shown at line 15. In
transform dialect, currently, there is no support for loop coalescing. Therefore, PEAK does not
support loop coalescing and is limited to computations with parallel dimensions less than three
dimensions (GPU compute dimension).

1 # Matrix dimensions i, j, k

2 matmul_i , matmul_j , matmul_k = tuple(matmul.op.axis) + tuple(matmul.op.

reduce_axis)

3 out_i , out_j = tuple(out.op.axis) + tuple(out.op.reduce_axis)

4 # Tiling i dimension by factor of 2

5 matmul_i_o_i , matmul_i_i = s[matmul ].split(matmul_i , factor =2)

6 ...

7 # Reorder the loops

8 s[out]. reorder(out_i_o_o_o , out_j_o_o_o , out_i_o_o_i , out_j_o_o_i ,

out_i_o_i , out_j_o_i , out_i_i , out_j_i)

9 # Move data pointed by B to shared memory.

10 B_shared = s.cache_read(B, "shared", [matmul ])
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11 ...

12 # Fuse loops into single loop

13 out_i_o_o_o_j_o_o_o_fused = s[out].fuse(out_i_o_o_o , out_j_o_o_o)

14 # Bind fused loop onto threads

15 s[out].bind(out_i_o_o_o_j_o_o_o_fused , te.thread_axis("blockIdx.x"))

16 ...

17 # Unroll loop by 1024

18 s[matmul ]. pragma(matmul_i_o_o_o_o , "auto_unroll_max_step", 1024)

19 s[matmul ]. pragma(matmul_i_o_o_o_o , "unroll_explicit", True)

Listing 1.2: TVM scheduling snippet for matmul (Shortened)

3.2 Autotuner Integration

The existing cost model in the MLIR compiler has a simple heuristic, and sometimes its generated
code does not perform well. Auto-tuners search for the best-performing implementation in a large
space of possible code variants. We employ autotuning search in MLIR, guided by using a dynam-
ically constructed predictive performance model trained with timing data from the execution of
many code variants on the target GPU platform. The autotuner searches for values of parameters,
such as tile size and unrolling depth, in a code configuration defined by the schedule. Many exist-
ing known works [4–6, 13, 21, 26, 27] show the advantage of combining autotuners with scheduling
languages.

We choose the ytopt autotuner [23], which uses Bayesian optimization. It implements vari-
ous search algorithms like Random Forest(RF), Extra Trees(ET), Gradient Boosting Regression
Trees(GBRT), and Gaussian process(GP). We use the matrix multiplication(Matmul) as an exam-
ple with two different search algorithms, GBRT and RF.

Figure 3 shows how we integrate ytopt into the existing MLIR and IREE compilation flow.
The generated PEAK schedule, according to computation and defined search space, are two inputs
of the autotuner. In the PEAK schedule, we annotate the code with parameter placeholders, like
threadblock shape (TX, TY ) and grid shape (BX, BY ), which are associated with multiple-level
tile sizes and other performance factors. Next, the PEAK schedule is bound to parameter values
chosen from the search space, and a small group of code variants are lowered down to the transform
dialect and later compiled by the MLIR/IREE compiler. Each code variant is executed on the target
hardware, and the execution time is collected. In the autotuner, we define the objective function to
minimize the execution time.

4 Optimizations to MLIR/IREE Backend

We use the MLIR/IREE compiler as the GPU code generator in this work. The computation is
expressed in MLIR IR. An MLIR transform dialect file is provided in MLIR/IREE to generate
the final executable on the GPU. We noticed some limitations of the GPU code generation flow
in the default MLIR/IREE transform dialect. We have implemented several optimizations in the
transform dialect pipeline to enable MLIR/IREE to generate high-performance code for GPU.

Thread Distribution of Shared Memory Copy Memory access efficiency is the key factor
that determines performance. In the original MLIR/IREE compilation pipeline, shared memory
copies were not distributed across threads. Threads in a thread block do not fetch data from/to
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PEAK Schedule AutoTunerMLIR/IREE Compiler

Time t1, t2, …

Search Space

Tx = [1, 2, 4, …],
Ty = [1, 2, 4, …],

Bx = [1, 4, 16, …],
By = [1, 4, 16, …],

…

Code Config 
c1, c2, …

Selected New Code Configurations

Fig. 3: Autotuner Integration in MLIR

global memory to/from shared memory in a collaborative way, instead copying the entire data
chunk individually. The redundant shared memory copying results in significantly high data move-
ment, which slows down performance. We first locate the linalg.copy instructions, which manage
shared memory copying. An additional control flag as an attribute is added to the operation and
carries the information to the MLIR/IREE compilation passes. Next, the attribute is utilized in the
GPUDistributeSharedMemoryCopy pass in MLIR/IREE and allows data copying to be distributed
among threads in a warp in the cyclic distribution way. Additionally, to generate efficient memory
transfer GPU code, we enable the GPUVectorizationPass, which emits vectorized memory transfer
instructions. Specifically, it generates vector.transfer read and vector.transfer write opera-
tions for data sizes with inner dimensions divisible by 128 (optimal size for data transfer in NVIDIA
GPU). The vectorized memory load and store instructions reduce the total amount of memory re-
quests, which results in the performance gain of the final GPU code.

Memory Request Optimization In GPUs, the memory requests from a warp are grouped to
form transactions. If contiguous threads in a warp request contiguous memory locations in global
memory (coalesced accesses), then the total number of transactions is minimized. The MLIR/IREE
compiler can emit vectorized memory transfer instructions when the inner dimension of the data is
a multiple of 128. For cases where the inner dimension data type size is not divisible by 128, the
default GPUVectorizationPass implementation falls back into a block-cyclic distribution among
threads. This leads to non-coalesced data accesses and causes a performance penalty. To resolve
this inefficiency and enable vectorization for arbitrary problem sizes, we modify and enhance the
existing GPUVectorizationPass. We emit vectorization instructions with an inner dimension size
of 1, represented as vector⟨n×1⟩, which supports any data shape, and the total number of memory
instructions is reduced by the vector length. The optimization effectively hides memory latency and
improves the utilization of the GPU memory pipeline unit.
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5 Evaluation

In this section, we compare performance of the code generated by PEAK with the state-of-the-art
autotuning framework Ansor [26] on five benchmarks. We study the performance tradeoffs and
effectiveness of key optimizations in MLIR/IREE and explain the main bottleneck in MLIR/IREE
compilation flow, which impacts the performance of the generated code.

Experiment Setup The experiments were carried out on Nvidia Ampere A100 80GB GPU
hosted on an AMD EPYC 7513 with a 32-core CPU running CentOS. For collecting TVM/Ansor’s
performance, we allowed Ansor to explore 1000 trials and used the best version found for each
benchmark. We use the same number of trials in our work to present the performance results. We
employ the ytopt autotuner with two distinct ML algorithms: Random Forest (RF) and Gradient
Boosted Regression Trees (GBRT). Across all benchmarks, we maintained uniformity by utilizing
the same schedule template, as demonstrated in Section 3.1.

BenchmarksWe evaluated the following benchmarks: GEMM (General Matrix Multiplication),
MatVec (Matrix Vector Multiplication), Transposed GEMM, Convolution 1D, and 2D on input sizes
commonly found in AI and deep learning applications. Optimizing these kernels would potentially
speed up end-to-end deep learning models. We list the benchmarks with detailed problem sizes used
in our evaluation in Table 3, Table 2 for convolutions; Problem sizes of MatVec and GEMM are
shown in the x-axis in figures.

Table 2: Problem sizes of 2D convolution operators in VGG (Left), ResNet (Middle) and Yolo
(Right); CI: Input channels; CO: Output channels; H, W: Input image height and width; r/s:
kernel height and width; stride: 1/2 (2 if marked with * after kernel name, 1 otherwise); p: padding
value.

Layer H,W CO CI r/s p

V1 224 64 3 3 1
V3 112 128 128 3 1
V5 56 256 256 3 1
V7 28 512 512 3 1
V9 14 512 512 3 1

Layer H,W CO CI r/s p

RN1* 224 64 3 7 3
RN2(1) 56 64 64 1 0
RN2(2) 56 64 64 3 1
RN2(3) 56 256 64 1 0
RN3(1)* 56 128 256 1 0
RN3(2) 28 128 128 3 1
RN3(3) 28 512 128 1 0
RN4(1)* 28 256 512 1 0
RN4(2) 14 256 256 3 1
RN4(3) 14 1024 256 1 0
RN5(1)* 14 512 1024 1 0
RN5(2) 7 512 512 3 1
RN5(3) 7 2048 512 1 0

Layer H,W CO CI r/s p

Y0 544 32 3 3 1
Y2 272 64 32 3 1
Y4 136 128 64 3 1
Y8 68 256 128 3 1
Y9 68 128 256 1 0
Y12 34 512 256 3 1
Y13 34 256 512 1 0
Y14 68 512 256 3 1
Y19 17 512 1024 1 0
Y20 17 1024 512 3 1

Performance Results Figure 4(a)-(c) show the relative performance of the code generated by
PEAK compared to the best code generated by Ansor over 1000 trials, for MatVec, GEMM, and
Transposed GEMM, respectively. Similarly, Figure 5(a)-(b) show the relative performance of the
code generated by PEAK as compared to Ansor for Conv1D and Conv2D.

Our work, PEAK, outperforms the best code generated by Ansor in all problem sizes for MatVec
(Figure 4a). Our work archieves up to 2.3× performance gain, with a geomean of 1.52×. The best
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(c) Transposed GEMM

Fig. 4: Relative performance of PEAK and Ansor for (a) MatVec, (b) GEMM, and (c) Transposed
GEMM.
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Table 3: Problem sizes of 1D convolution operators; CI: Input channels; CO: Output channels;
W: Input image width; kw: kernel width; stride: 1/2 (2 if marked with * after kernel name, 1
otherwise); p: padding value.

Layer W CO CI kw p

C1* 128 256 128 1 0
C2* 256 128 64 3 1
C3 32 512 512 3 1
C4 64 256 256 5 2

code generated by PEAK minimizes bank conflicts, which results in higher memory throughput. In
addition, we notice that it is beneficial in some cases to avoid using the fused multiply-add (FFMA)
instructions and instead use two instructions(FADD and FMUL), and the increased ILP potentially
leads to performance gain. We present the performance data of GEMM and Transposed GEMM
benchmarks in Figure 4b and Figure 4c. The absolute performance results exhibit a noticeable per-
formance gap compared to Ansor, where the geomean of speedup is 0.84× and 0.92× over problem
sizes in GEMM and Transposed GEMM, respectively. The presence of increased bank conflicts in
shared memory storage and reduced loop unrolling of iterations results in lower performance. This
issue becomes more pronounced when dealing with input data sizes that are not powers of two.
We see the performance differences in Convolution 1D and 2D shown in Figure 5a and Figure 5b.
These benchmarks are particularly sensitive to optimizing memory accesses and effectively utilizing
shared memory. As a result, the code’s performance shows a decline in these cases.

Performance Bottleneck Analysis We notice the performance bottleneck of our work is the
data copies in the underlying MLIR/IREE compiler. We investigate one 2D convolution case, which
has a large performance difference. We start from the default MLIR/IREE implementation to code
variants that have applied multiple optimizations in MLIR/IREE, as discussed in Section 4. As
shown in Table 4, the default MLIR/IREE implementation performs poorly against TVM/Ansor,
and the absolute performance is roughly 23× slower. One of the main reasons is the distribution
of shared memory copy is not enabled in the IREE pipeline, which leads to redundant memory
transfers and data movement. After applying thread distribution in shared memory optimization,
the total number of shared memory store requests has dramatically reduced, and the new code
version issues 24× less shared memory requests. Compared to these two code versions, performance
improves by 6×. We further apply memory request optimization to resolve non-coalesced memory
access patterns by allowing vectorized data movement. The optimization leads to a 4× improvement
in shared memory store and 2× reduction in global load transactions. The overall performance has
a 2.32× speedup. However, the performance difference against TVM/Ansor is still noticeable after
applying the above optimizations in PEAK. Compared to TVM/Ansor, the amount of wavefront in
the shared memory store is 8× more and the performance is slower by 1.69×. We conducted further
investigation, and we noticed two main points in TVM/Ansor: (1) TVM employs techniques such
as software pipelining, unrolling, and virtual threads to fully utilize register, to maintain good
instruction level parallelism (ILP), and to distribute data copying workload evenly among threads
in the thread block; and, (2) TVM/Ansor has the linearized data buffer view instead of an N-
dimensional buffer in MLIR/IREE which allows contiguous memory data copy access pattern and
avoids non-coalesced access on GPU.
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Fig. 5: Performance comparison in convolution operation

Table 4: Comparison over various optimizations; Performance is measured in the unit of TFLOPS
on A100 GPU; ST means store and LD means load.

Cases Performance SM LD Wavefront SM ST Wavefront Global LD Wavefront

Default IREE 0.11 7,741,440 96,337,920 77,236,464

Thread Distribution(SM) 0.64 6,881,280 4,042,752 3,999,744

Memory Request Optimization 1.49 8,945,664 1,634,304 1,724,860

TVM/Ansor 2.52 4,344,041 272,384 532,233

6 Conclusion and Future Work

In our work, we proposed PEAK, a high-level scheduling language in MLIR, making it useful for
users to generate high-performance code without knowing the low-level MLIR details. We enable
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the autotuner to replace the existing naive cost model in MLIR. In comparison to PEAK with
state-of-the-art Ansor, our analysis provides valuable insights into performance variations across
different compiler stacks and paves the way for future improvements in MLIR. In future work,
we plan to conduct more experiments with end-to-end model evaluation and include more types of
computation operators. We plan to generalize scheduling language design beyond GPUs and extend
this work to more target architectures.
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