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Abstract. Production compilers have achieved a high level of maturity
in terms of generating efficient code. The code generated by any two pro-
duction compilers can turn out to be very different based on pros and
cons of their respective Intermediate Representation (IR), implemented
loop transformations and their ordering, cost models used and even in-
struction selection (such as vector instructions) and scheduling. Hence,
the performance of produced code for a program segment by a given
compiler may not necessarily be matched by other compilers.

This paper proposes a meta-compilation framework, the MCompiler ,
which allows different segments of a program to be compiled with differ-
ent compilers/optimizers and combined into a single executable. It turns
the differences between compilation processes and performance optimiza-
tions in each compiler from a weakness to a strength. Utilizing the highest
performing code for each segment can lead to a significant overall im-
provement in performance. A loop nest is used as a segment in this work,
but other choices can be made.

The question is, though, which compiler will produce the best code for
a segment. This work then presents a technique to accomplish this using
Machine Learning. It learns inherent characteristics of loop nests and
then predicts during compilation which code optimizer is the most suited
for each loop nest in an application.

The results show that our framework improves the overall performance
for applications over state-of-the-art compilers (compiled at equivalent of
-O3) by a geometric mean of 1.97x for auto-vectorized code and 2.62x for
auto-parallelized code. Parallel applications with OpenMP directives are
also improved by the MCompiler , with a geometric mean performance
improvement of 1.13x. The use of Machine Learning prediction achieves
performance very close to the exploratory search for choosing the most
suited code optimizer: within 4% for auto-vectorized code and within 8%
for auto-parallelized code.

Keywords: Compiler Optimizations, Loop Transformations, Compila-
tion Framework, Machine Learning
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1 Introduction
An important compiler task is optimizing applications for better performance

on target architectures. The means to reach the goal of producing high perfor-
mance code may, and in most cases do, differ between any two production com-
pilers. For program segments, such as loop nests, the performance of generated
code from a compiler may either turn out to be better or worse compared to other
compilers. They are the unavoidable result of many NP-Hard or NP-Complete
problems encountered in the compilation/optimization process[23,44]. Compil-
ers try to approximately solve NP-Hard problems efficiently and effectively by
using cost models that are based on many assumptions. Compiler writers try
to find the optimal solutions, based on experimentation, that work well for a
large portion of target applications for their compiler, but not all. Therefore, it
is quite apparent why different compilers produce different results for a given
program segment. This calls for a strategy to harness the strengths of multiple
compilers, while substituting the weakness of individual compilers. Hence, we
are presenting a compilation framework that will provide both the users of com-
pilers and compiler writers a means to find best possible solution for their target
applications.

Optimizing loop nests, in particular, contributes significantly towards achiev-
ing better performance. State-of-the-art architectures have multiple cores on a
chip, where each core has Single Instruction Multiple Data (SIMD), or vector,
capabilities. These architectural features provide opportunities for a compiler
to expose parallelism in applications on multiple levels, but with a caveat of
additional complexity in the decision making for the compiler. The code opti-
mization techniques to auto-vectorize the loop nests [35,1,52], so as to generate
SIMD instructions, require careful analysis of data dependences, memory access
patterns, etc. Several auto-parallelization techniques [34,26,28,27,29,25,6,12] and
directive based parallel programming models, such as OpenMP [33], have been
developed to take advantage of multiple cores. In fact, most auto-parallelization
implementations in modern compilers, which take serial code as input, generate
OpenMP code [21,37,38].

Code optimizers apply a semantic-preserving sequence of transformations to
generate a better performing code, either serial or parallel. But evaluating if
a sequence of transformations is optimal is NP-Hard and the search for the
best sequence of transformations and their profitability is guided by heuristics
and/or approximate analytical models. Thus, a code optimizer may end up with
a sub-optimal result and different code optimizers may, for the same source code
segment, generate code with significant performance differences on the same ar-
chitecture. A major challenge in developing the heuristics and cost models is
predicting the behavior of a multi-core processor which has complex pipelines,
multiple functional units, complex memory hierarchy, hardware data prefetch-
ing, etc. Parallelization of loop nests involves further challenges for the code
optimizers, since communication costs based on the temporal and spatial data
locality among iterations have an impact on the overall performance. Evaluation
studies [32,47,30,16] have shown that state-of-the-art code optimizers may miss
out on opportunities to auto-vectorize and auto-parallelize the loop nests for
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modern architectures. From a given code optimizer’s point of view, the sequence
it used is the best it could do but there is no way of knowing how close it gets
to optimal performance or if there is any headroom for improvement.

This paper presents a compiler framework, MCompiler , that allows each loop
nest to be optimized by the best optimizer available for it. The MCompiler iden-
tifies loop nests in C applications, optimizes the loop nests using different code
optimizers, times each optimized code version in execution of its complete appli-
cation, and links the best performing code to generate the complete application
binary. This is referred to as the exploratory search method of the MCompiler .
The MCompiler currently incorporates code optimizers from Intel’s C compiler,
GNU GCC, LLVM Clang and PGI’s C compiler. In addition to these, two Poly-
hedral Model based loop optimizers, Polly [17,38] and Pluto [7,37] are used, if
applicable. The best loop nest code selection allows the MCompiler to produce
higher-performing code than the best of the code optimizers in the framework.
The MCompiler benefits from the entire compilation process (loop transforma-
tions and optimizations, and code generation) implemented in each of the code
optimizers. The paper presents a study of the proposed approach’s potential. It
optimizes each extracted loop nest separately with all available code optimiza-
tion candidates. The performance of each optimized loop nest is measured as
part of the complete application execution. The best performing code for a loop
nest is selected for linking into the final executable. This step, referred to as
exploratory search, shows that the framework can indeed improve the resulting
code’s performance. We show that our framework achieves an overall geomet-
ric mean speedup of 1.97x for serial code, 2.62x for auto-parallelized code and
1.13x for OpenMP code over Intel C Compiler (compiled with -Ofast) across
benchmarks from multiple benchmark suites.

However, this prompts the question “Can we learn and predict which compiler
will produce the best code for a loop nest without an expensive search?”. The
paper proposes a Machine Learning (ML) based technique to predict the most
suited code optimizer for a given loop nest. This makes the use of the exploratory
search step in the framework unnecessary for selecting the best compiler for a
loop nest. However, as with any prediction, it can lead to a potential performance
loss compared to search-based selection due prediction errors, e.g., when the ML
model or classifier does not choose the best code optimizer. Our results show
that by using well-trained ML models this potential loss in performance can be
quite small. This section of our work is an extension to the work by Shivam et.
al. [42].

Embedding Machine Learning models in compilers is continuously being ex-
plored by the research community [31,44,43,10,47,48,15,36,45,9,24,49,3,42,18].
Previous studies have shown that hardware performance counters can success-
fully capture the characteristic behavior of a loop nest. Hardware performance
counters can capture intricate details about data movement across levels of
caches, memory footprint, and count and types of instructions retired that de-
termine the performance of loop nests on an architecture. The approach used
in this paper relies on hardware performance counters collected for a loop nest.
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In our approach the hardware performance counters are collected from a sin-
gle profile of the applications, i.e., the applications are compiled with just one
code optimizer and then executed once. A number of possible Machine Learning
features were investigated. The best results were achieved using the hardware
performance counter data collected from profiling a serial (-O1) version of a loop
nest. This is what is used in this paper. The reason for using -O1 version of the
loop nest is that this version shows inherent code characteristics, i.e., generated
code is an unoptimized version without any complex code transformations.

The evaluation of the MCompiler with Machine Learning predictions shows
that the performance of applications is within 4% for auto-vectorized code and
within 8% for auto-parallelized code compared to the exploratory search for the
most suited code optimizer. We skip ML predictions for loop nests parallelized
using OpenMP directives because in this case code optimizers lose flexibility to
optimize the OpenMP regions and the performance is no longer just dependent
on the inherent characteristics of loop nests. Hence, this problem is not suitable
for such predictions.

Overall, this paper makes the following contributions:

– It presents a meta-compilation framework that improves performance for
C applications for serial as well as parallel execution, including OpenMP
applications.

– It shows that using the framework can achieve better performance over state-
of-the-art compilers (compiled at equivalent of -Ofast) by a geometric mean
of 1.97x for auto-vectorized code, 2.62x for auto-parallelized code and 1.13x
for OpenMP code.

– It demonstrates that prediction for the most suited code optimizer (serial
as well as parallel) for a loop nest can be accurately made using Machine
Learning classifiers (with under 4% performance loss).

– The framework will be open sourced for researchers and compiler developers
to analyze and compare their code optimization techniques.

The rest of the paper is organized as follows. Section 2 describes theMCompiler
framework and the methodology for choosing the most suited code optimizer for a
loop nest using exploratory search as well as using ML-based prediction. Section
3 describes the evaluation methodology and analyzes the experimental results.
Section 4 discusses related work. We conclude the paper with Section 5.

2 Framework Design and Implementation
This section describes the overall architecture of the MCompiler framework

and the technical details about the individual phases of the framework. This
framework achieves significant performance improvements as will be seen in the
Experimental Analysis section. The changes for incorporating Machine Learning
predictions are discussed later in the next section.

2.1 Overall Framework Architecture

Figure 1 shows the structure of the MCompiler framework. The first phase
is the Loop Extractor from C applications. The Extractor parses the source files
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Fig. 1: MCompiler Framework

to find loop nests, extract those loop nests as functions into separate, inde-
pendently compilable files and replaces the loop nests with the corresponding
function call in the base source file. Base files are similar to the original source
files but with loop nests replaced with function calls. Whereas loop files are newly
generated files which define the function containing the loop body and support-
ing components to make them compile successfully. This Extractor is inspired
by the loop extractor described in the work by Chen et. al. [11] to encapsulate
loop nests into standalone executables.

The second phase is the Optimization phase. The Optimizer compiles each
loop file with the available code optimizers. Also, it compiles the base files and
additional MCompiler files, i.e., files added to support the functioning of the
framework. For source-to-source code optimizers, a default compiler is used to
compile optimized loop files, the base files and additional files.

The third phase is the Exploratory Search phase, where an application is
executed to record the execution times of the extracted loop nests. Executables
generated for each code optimizer are executed and reported execution times for
the loop nests are collected.

The final phase is the Synthesis phase. Here, for each extracted loop nest,
the collected loop execution times from every code optimizer are compared and
the best performing code/optimizer is selected, i.e., the optimized code that
executes the loop body in the shortest time. Finally, the default compiler links
the selected object files for every loop nest file, plus the object files generated
by the default compiler for the base files. This step also requires linking libraries
that code optimizers may have used or taken support of for generating code for
the loop files.

2.2 Loop Extraction Phase

The loop extractor works in three phases and is implemented using ROSE, a
source-to-source compiler infrastructure [40]. First, the extractor traverses the
abstract syntax tree (AST) and locates the for loop nests that are eligible for
extraction. Second, the extractor creates a new file for this loop, adds necessary
headers and macro definitions in the loop file, and also adds extern declarations
for global variables and global functions, as well as for functions called in the
scope of the loop body. It encloses the loop body in a function definition with
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parameters being the variables and pointers to the data structures required by
the loop body in order to compile and run correctly. Third, in the base file’s AST
it replaces the loop body with a function call (with required arguments) and adds
an extern declaration to this function. Finally, it generates the modified base
source file and the new loop files. While traversing the AST for eligible loop
nests, the extractor skips loop nests with irregular control flow that hinders
extraction, i.e., contains return and goto statements. Also, it skips loop nests
with calls to static functions and static variables since those properties hinder
their usage in the new loop files.

The extractor generates two versions for each loop file, where one version is
instrumented to collect the execution time for the loop nest. This version is used
during the Exploratory phase. The other version does not contain any instru-
mentation code and is used to generate the final executable for the applications.

Function Definition enclosing the Loop Nests The extractor generates
the list of variables, with their data types, used inside the scope of the loop
body. All primitive data types (int, float, etc.) are passed by reference, as well
as the user-defined types such as arrays, structs and typedefs. The extractor
also does an optimization to maintain properties of the loop from the point of
view of the code optimizers. This optimization copies the function parameters
of primitive types (passed by reference) into local variables (with same names
as original variables) before the loop body and correspondingly copies the local
variables into the function parameters at the end of the loop body. This opti-
mization prevents any change to loop body and is also critical to performance
since usage of pointers can prevent some code optimizations.

The extractor also annotates loop nests with pragma scop/endscop so as
to aid source-to-source Polyhedral optimizers, such as Pluto, in locating Static
Control Parts (SCoP). If the loop nest was indeed not a SCoP, then Polyhedral
optimizers can’t optimize them. The framework will recognize that in the Opti-
mization Phase and discard Polyhedral optimizers as a candidate for those loop
nests. For loop nests with OpenMP directives, the extractor moves the direc-
tives with loop body and sanitizes the clauses of variables that are not present
in the scope of the loop nest. For OpenMP for loops that are enclosed in a
omp parallel region, extracting the loop body with omp for directive doesn’t
change the behavior of the program. One issue with extracting OpenMP for

loops that are enclosed in a parallel region in such manner is that in the
presence of threadprivate variables, synthesizer encounters a link-time error
because compilers may generate different symbols for the same threadprivate

variable.

2.3 Optimization Phase

The framework currently uses six candidate code optimizers: Intel’s icc,
PGI’s pgcc, GNU’s gcc, LLVM clang, LLVM based polyhedral loop optimizer
Polly and source-to-source polyhedral loop optimizer Pluto. We chose icc as
the default compiler because its performance is, on average, the best of the
compilers included. It is also used to compile source files generated by a source-
to-source loop optimizer, i.e., Pluto. The flags used for optimizing loop nests are
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equivalent of -Ofast for serial execution, and -parallel for parallel execution.
For polyhedral loop optimizers, flags to enable tiling, vectorization and auto-
parallelization are selected. These flags also include target architecture specific
flags to enable optimizations that can generate better performing code on the
specific architecture. For OpenMP applications, flags from serial configuration
are used in addition to the OpenMP flags.

2.4 Exploratory Search Phase
The Exploratory Search Engine invokes executables generated by the code

optimizers one-by-one and performs multiple runs for stable data, if requested.
Exploratory Search Engine at the end of each execution collects the information
for each of the loop nests and forwards it to the Synthesizer. For applications
that need input through command line, the Exploratory Search Engine runs the
application with the input given to the MCompiler framework.

2.5 Synthesis Phase
The synthesizer compares the collected execution times for each loop nest

from different code optimizers and chooses the code optimizer that performed
the best as the most suited code optimizer. For loop nests with no information,
i.e., the code that was not executed during Exploratory Search phase, the de-
fault compiler is used. The synthesizer then generates the final executable that
contains no instrumentation code. For an OpenMP application, the synthesizer
links OpenMP runtime libraries that are used by different compilers, e.g., icc,
pgcc and clang use compatible OpenMP runtime libraries whereas gcc doesn’t.
Therefore, say, if for an application MCompiler chooses a omp parallel for re-
gion from icc and another from gcc, then the parallel regions will be executed
by different OpenMP runtime libraries. Static libraries specific to compilers are
also linked to successfully generate the final executable.

2.6 Framework Architecture for Machine Learning Predictions
The framework for choosing the most suited code optimizer for loop nest

using ML prediction is shown in figure 2. The goal is to eliminate the time-
consuming Exploratory Search step of the framework and use the ML prediction
to select the best code optimizers during compilation. The ML predictions are
used to predict the most suited code optimizer for both serial, auto-vectorized
code as well as auto-parallelized code. The input to the ML Classifier for making
a prediction are the hardware performance counter values collected during exe-
cution of a loop nest. The use of hardware performance counter-based measure-
ments to predict the most suited code optimizer follows the work of Shivam et.
al. [42]. Prior work [31,43,10,47,48,15,36,45,9,24,49,3] have used Machine Learn-
ing in compilers for various tasks, such as, selecting the best performing flag
combinations, predicting the best loop unrolling factor, selecting the best poly-
hedral optimizations, predicting the likelihood of vectorization for loop nests,
predicting about parallelism in loop nests, etc. The work of Shivam et. al. [42]
was the first to show the possibility of predicting the best code optimizer for
loop nests.

We empirically chose Random Decision Forest [20] as our classification algo-
rithm to predict the most suited code optimizer for the loop nests. Prior work
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that automatically generated features from the compiler’s intermediate repre-
sentation (IR) [24] has shown that Machine Learning algorithms do learn from
features that may not be intuitive even to an expert compiler writer. Most help-
ful features for a Machine Learning algorithms are difficult to explain precisely,
but understanding them can help infer their importance. We looked at the most
important features for our Machine Learning classifier and made an attempt at
inferring their importance for the classifier.

Fig. 2: MCompiler Framework with Machine Learning Predictions

Some of the key reasons for why hardware performance counters as features
are able to capture the characteristic behavior of loop nests are as follows. First,
instruction count and stalls related to data movement such as load and store
instructions retired, either scalar or vector, characterize traffic effect from the
TLBs, caches and RAM. Second, stall cycle counters (for hardware resources)
determine if the loop nest performance is limited by a particular resource. Third,
L1, L2 and L3 hit/miss counters determine the memory footprint and provide
information about the data access pattern. For example, the counters for a loop
nest with a stride-1 access pattern have lower L1 and/or L2 cache misses than
a loop nest with larger or non-linear strides. Stride-1 access also correlates with
vectorizability. Also, the hardware prefetchers are stride 1 or next line, resulting
in further latency reduction. Lastly, instructions per cycle retired for arithmetic
operations on different data types such as Floating Point (both single and dou-
ble precision) or Integer provide information about the throughput/latency of
computations.

The code optimizers perform a set of optimizations/loop transformations that
are based on properties of the loop nest. For example, different code optimizers
may choose to unroll the innermost loop by different factor or just not unroll
at all based its loop trip count and memory access pattern. Such properties of
the loop nests are captured by the hardware counters. Similarly, a lot of cache
misses at L1 and L2 level, may suggest transformations like loop interchange
or loop tiling can be beneficial. Another example would be if L1 and L2 have
higher cache misses than L3, then loop interchange, if possible, could benefit
towards getting better performance by allowing much more efficient access to
data. Transformations, such as unrolling, tiling and interchange, may also lead
to vector code generation that often has high impact on performance. So counters
do correlate with potentially beneficial transformations and one compiler may
perform such transformations or combinations thereof better than another.
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The architecture of the MCompiler framework is modified in the following
ways for ML prediction of the most suited code optimizer for a loop nest. First,
the Optimizer now generates an executable that is compiled by the default com-
piler for serial execution with -O1 optimization level. Second, the Exploratory
Search Engine is replaced by the Hardware Counter Collector for making ML
predictions. The hardware Counter Collector executes the serial (-O1) code and
collects hardware performance counters for each loop nest. This is done only once
using the default compiler, in contrast to the exploratory search that has to run
every compiler. As mentioned earlier, using the -O1 version of the loop nest helps
in preserving the inherent code characteristics, since the generated code is not
optimized using complex code transformations, and is similar across compilers,
therefore providing a good common baseline. If a loop nest is not executed or
the hardware performance counters are not present (e.g. for loop nests with very
few computations), the default compiler is chosen by the Synthesizer. Next, the
collected hardware performance counters for each loop nest are transformed into
the feature vector, i.e., the input to the ML classifier. Third, the ML classifier
makes the prediction for the most suited code optimizer for a loop nest based
on the feature vector. The ML classifier is a trained ML model. There are two
separately trained ML models, one for serial code predictions while the other
is for parallel code predictions. Finally, these predictions from the ML classifier
are forwarded to the Synthesizer, which uses the code from the predicted opti-
mizer and links the selected optimized loop object files and generates the final
executable for the application.

Collecting Hardware Performance Counters for the Loop Nests We
use the Intel compiler to generate the executable that is then used for profiling.
All loop optimizations are disabled during this compilation by using the -O1

flag. In addition to that, the optimizations that are responsible for vector code
generation and parallel code generation are disabled too. The profiling informa-
tion, therefore, provides an insight into the characteristics of the loop nests while
eliminating the influence of compiler transformations and behavioral changes in-
curred from special architectural features of the underlying architecture. The
performance counters that are collected include, but not limited to, instruction-
based (instruction types and counts) counters, CPU clock cycles-based (including
stalls) counters and memory-based (D-TLB, L1 cache, L2 cache, L3 cache) coun-
ters. Once the hardware performance counters are collected for the loop nests,
the dynamic instruction count is not used as a feature. The other hardware per-
formance counters are normalized in terms of per kilo instructions (PKI). Based
on our analysis, this allows the Machine Learning models to learn about the in-
herent characteristics of the loop nests and not bias them towards characteristics
such as loop trip count.

3 Experimental Analysis

This section describes the experimental methodology and present the results
and their analysis demonstrating the effectiveness of the MCompiler framework.
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3.1 Benchmarks, Code Optimizers and Target Architecture
Several different benchmark suites are used to evaluate the effectiveness of

the MCompiler framework. One is Test Suite for Vectorizing Compilers (TSVC)
by Callahan et al. [8] and Maleki et al. [30]. This benchmark was developed
to assess the auto-vectorization capabilities of compilers. Therefore, these loop
nests are only used in the serial code related experiments. The second bench-
mark suite used is Polybench [39]. The benchmarks in Polybench have been
demonstrated to have performance gain on parallelization, therefore these loop
nests are used for auto-parallelized code experiments as well. The third bench-
mark suite is NAS Benchmark Suite [4], especially, NPB3.3-SER, NPB3.3-OMP
and NPB-ACC [53]. These benchmarks are used in serial code, auto-parallelized
code and OpenMP parallel code experiments. Lastly, a set of C benchmarks from
Parboil [46] and SPEC OMP 2012 were used for OpenMP experiments. The
train dataset was used for SPEC benchmarks during the exploratory search
phase, whereas the results are shown for ref dataset. Six code optimizers are
incorporated in the MCompiler framework, as mentioned in section 2.3. All six
optimizers are used for serial and OpenMP experiments. Of the six optimizers,
only four optimizers (icc, pgcc, Polly and Pluto) can auto-parallelize the serial
code and are used for auto-parallelized code experiments. The baseline for perfor-
mance comparison is icc (-Ofast -xHost [-parallel]) compiled benchmarks
for all experiments. icc was chosen as the baseline because icc generated code
performed better for more benchmarks than other code optimizers as shown
in Fig. 5. The source codes used for the baseline are the original benchmark
codes and not the modified source codes generated by the MCompiler ’s Loop
Extractor.

The target architecture for our experiments is a two-socket, sixteen-core Intel
Skylake Xeon Gold 6142 [14].Turbo boost is switched off, cores are operating at
the maximum frequency, i.e., 2.6 GHz. For the auto-parallelization and OpenMP
experiments, only one thread is mapped per core by setting the environment
variables for OpenMP runtimes.

3.2 MCompiler with Exploratory Search
This section presents results of the exploratory search by the MCompiler for

choosing the most suited code optimizer for three benchmark suites: complete
TSVC, Polybench, and NAS Benchmark Suite (NPB). Each application was
executed 3 times for each of the code optimizers and the median execution time
was chosen for deciding the most suited code optimizer.
Serial Code The results are shown in Fig. 3. The benchmark labels show
the dataset set size in parenthesis and the benchmark suite that a particular
benchmark belongs to. The GeoMean speedup across the 151 loop nests from
TSVC is 1.34x over icc. As shown in Fig. 5, icc was chosen as the most suited
code optimizer for 49% of the loop nests, followed by Pluto (source-to-source
optimizer, compiled with icc) at 22.5%. In many of those 22.5% cases, loop
tiling from Pluto followed by vector code generation from icc provided better
performance than just icc itself.

The performance of the MCompiler for Polybench benchmarks is 2.44x (Ge-
oMean) better than icc. As expected, the two polyhedral model based optimizers
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Fig. 3: MCompiler Speedup for Serial Benchmarks

Fig. 4: MCompiler Speedup for Auto-Parallelized Benchmarks

were chosen as the most suited code optimizer for 60% of the loop nests that
dominate execution time of the main kernels for Polybench benchmarks. icc and
clang were each chosen as the most suited code optimizer for 14.6% of the ker-
nel loop nests, with the remaining loop nests split equally among the remaining
code optimizers. icc was chosen as the most suited code optimizer for 153 out
of 288 (53%) loop nests from NPB benchmarks (not counting loop nests such as
array initialization loops).

Overall the percentage of loop nests chosen from each code optimizer can
be seen in Fig. 5. For analysis shown in Fig. 5, we removed trivial loop nests
that perform tasks that do not test the optimization capabilities of the code
optimizers. For example, loop nests that are used to allocate dynamic memory,
to perform array initialization, etc. It shows that across all benchmarks, while
icc dominates overall, 52% of loop nests are best optimized by other code op-
timizers (with approximately equal distribution among them, except for gcc).
More details for specific cases are explained in section 3.2.

Auto-Parallelized Code These experiments were performed with 32 threads
for both the exploratory search phase and evaluating the performance. The code
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optimizers optimized the loop nests with their default setting for statically de-
ciding the profitability of the parallel code and for choosing the runtime settings,
such as scheduling policies.

The results in Fig. 4 show that the MCompiler improves performance over
icc, by at least 5%, for 23 out of 38 benchmarks. Several additional benchmarks
have no change in performance. Five have a significant performance loss, which
is explained in section 3.2. Overall the percentage of loop nests chosen from each
code optimizer can be seen in Fig. 5. Similar to the trend seen for serial code
benchmarks, icc dominates for NPB benchamrks, whereas polyhedral model
based optimizers perform better for Polybench benchmarks.

Fig. 5: Distribution of best performing code per
Code Optimizer. Breakdowns per benchmarks
suite showcase benefits of specialized code op-
timizers.

Fig. 6: MCompiler Speedup
for OpenMP Benchmarks

OpenMP Code The results are shown in Fig. 6. Loop nests that were not
marked by OpenMP directives were optimized by the MCompiler as serial loop
nests. We did not expect much performance improvement from OpenMP regions,
since code optimizers lose flexibility to optimize the OpenMP regions due to
issues such as early outlining [5,13] of code. The results show that in a few cases
high speedups can indeed be achieved using the MCompiler . The reason for such
performance gains is explained in section 3.2.

Analysis of Results Analysis of the benchmarks that get slowdowns from the
MCompiler , such as 2mm (serial), 3mm (serial), deriche (serial), symm (parallel)
from Polybench, and BT (serial) and SP (parallel) from NAS benchmark showed
that the main reason for performance loss, based on compiler generated reports,
is the early outlining of loop nests into individual functions. This may hinder the
alias analysis and therefore compilers may generate sub-optimal code for such
loop nests.

Another reason for slowdowns can be attributed to the presence of loop nests
that have a very short execution time and/or executed multiple times (in a while
loop, for example), and perform trivial tasks such as iterating through a linked
list. For such loop nests, the MCompiler extraction adds performance overheads.
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This problem can be solved in the Extractor by automatically identifying trivial
loop nests with low loop trip count. This is subject of future work. For now, if
users want to manually mark such trivial loop nests with low loop trip count,
they can add pragma MC skiploop directive. Although, we didn’t add such di-
rectives or do any modificiation to the original source codes for the experiments
presented in this work. Also, the baseline compiler, i.e. icc, analyzes the entire
source file and can find more opportunities for optimization, including single-file
interprocedural optimizations such as inlining.

Fig. 6 shows speedups for OpenMP benchmarks. It shows significant speedups
for MCompiler on 359.botsspar from SPEC OMP 2012 and spmv from Parboil.
The reason for speedup in 359.botsspar is a loop nest with a computation
similar to matrix multiplication that is enclosed in a function, that is called
inside a omp task region. The MCompiler optimized this particular loop nest
as it do would for a serial loop nest and chose Polly generated code for this
loop nest. The reason for speedup in spmv is that, inside the OMP parallel

for region, the inner most loop was vectorized and unrolled by gcc. Whereas,
icc chose to not generated vector code for the same loop nest because, as per
the compiler generated report, the cost models suggested slowdowns because of
vectorization. The inner most loop had irregularly indexed loads which seemed
to have impacted the decision of icc’s cost models.

Key factors contributing to performance difference between code optimizers,
other than their loop transformations, are as follows. First, a difference in unroll
factor, which leads to the difference in type of vector instructions selected and
also leads to more consecutive load/store of data. Second, generation of multi-
variant code, which chooses the best code during execution based on runtime
analysis of dependences. Third, use of specialized libraries, such as the vectorized
math library.

3.3 MCompiler with Machine Learning Prediction

The training dataset for training the serial code classifier included loop nests
from TSVC and Polybench benchmark suites and had a total of 274 instances
(loop nests). The loop nests from NAS Parallel Benchmarks (NPB) were not
included in the training dataset. Therefore, the experimental results for the
MCompiler performance with ML predictions are shown for NPB benchmarks
only.

The auto-parallelized code classifier was trained using the training dataset,
which included loop nests from Polybench benchmark suite and has 194 instances
(loop nests). Again, the experimental results for the MCompiler performance
with ML prediction are shown for NPB benchmarks only, since these loop nests
were not used in training the ML model. The reason for choosing benchmark
suites such as Polybench and TSVC for creating the training dataset was to
expose the ML models to a diverse set of loop nests that exhibit different char-
acteristics. The specifics for creating the training datasets, characteristics of the
training dataset and evaluating the models are similar to the work of Shivam et.
al. [42].
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The properties of the trained RF classifier are as follows. Maximum depth
of the tree was set at 25 after analyzing that the model was neither underfitting
or overfitting on cross-validation. The maximum sub-categories were set at 15.
The minimum sample count at the leaf node was set at 5. Lastly, the size of the
randomly selected subset of features at each tree node that are used to find the
best split was set at 20.

The serial code classifier targets (e.g. most suited code optimizers) were
clang, gcc, icc and Polly. The auto-parallelized code classifier targets were
icc and Polly. pgcc was removed as a target in order to improve the accuracy
of the ML models. In the training dataset, the target for the instances with
pgcc as the most suited code optimizer were replaced by the second best code
optimizer. This decision was made after tuning and analyzing the ML models on
two performance measures: the area under the Receiver Operating Characteristic
(ROC) curve, also known as AUC, and classification accuracy. The evaluation
of ML models showed that replacing pgcc as a target class improved both AUC
and classification accuracy. Two reasons why this strategy worked in improving
the ML models are as follows. First, the lack of enough instances in the train-
ing dataset with target class being pgcc, i.e., not enough loop nests with best
code optimizer being pgcc. The training dataset is skewed towards icc as the
target class due to icc being chosen as the most suited code optimizer, similarly
shown in Shivam et. al. [42]. This leads to an unbalanced dataset where minority
classes have a very small share of the training instances and therefore are a ma-
jor challenge for ML classifiers [50,22,51,19]. Removing pgcc improved the share
of other minority classes such as clang, gcc and Polly. Hence, improving both
performance measures, AUC and classification accuracy, significantly. Second,
on analyzing the dataset we found that for a lot of instances where pgcc was
chosen as the best code optimizer, it had a small margin over the second best
code optimizer. This can potentially lead to another challenge for ML classifiers,
that is high overlapping in the feature space for multi-class classification.

We left out source-to-source code optimizer (Pluto) as a target code optimizer
since it requires another compiler to generate code and creates noise for ML
models in cases where the performance benefits are not significant from the
source-level transformations. Since Polly optimizations/passes run along with
the standard LLVM pass pipeline, Polly is considered as the most suited code
optimizer only when it shows at least 5% performance improvement over clang.
There are two reasons for setting a 5% performance improvement threshold
before attributing a loop nest to Polly over clang. First, from an ML point-
of-view, if there are two very similar loop nests (that will lie very close in a
multi-dimensional feature space), one has Polly as the target class whereas the
other has clang, then a ML algorithm will try to overfit in order to reduce the
classification error, while the actual impact on the performance will be quite
minimal. Second, a 5% execution time difference could just be a time variance
between multiple runs, i.e., experimental error. We did not train ML models to
predict the most suited code optimizer for the OpenMP regions for primarily
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one reason: the code optimizers lose flexibility to optimize the OpenMP regions
as mentioned before.

(a) Serial Benchmarks (b) Auto-Parallelized Benchmarks

Fig. 7: MCompiler + ML Predictions Performance for Serial and
Auto-Parallelized Benchmarks

Serial Code The performance results for ML predictions are shown in Fig. 7a
relative to the exploratory search. The most predicted code optimizer was icc
(51%), followed by clang (25%). The GeoMean performance loss over the ex-
ploratory search is 3.6%. The mis-predictions from the ML classifier were found
to have a larger impact on performance when most of the execution time is
dominated by one or very few kernels. The effect of a mis-prediction can thus be
significantly magnified. One such case is the EP benchmark where 88% of the
execution time is spent in one loop nest and clang was mis-predicted as the most
suited code optimizer for that loop nest instead of icc. For SP benchmark, the
exclusion of pgcc from ML predictions is responsible for the 9% performance loss
compared to the exploratory search which included all available code optimizers.

Auto-Parallelized Code The performance results for ML predictions are
shown in Fig. 7b relative to the exploratory search. The most predicted code
optimizer was polly (64%) and the rest was icc (36%). For LU benchmark,
Polly was predicted as the most suited code optimizer for multiple loop nests
used in computing the right hand side (rhs), whereas icc was chosen as the most
suited code optimizer by the exploratory search for those loop nests. For MG
and SP benchmarks, the exclusion of pgcc from ML predictions is responsible
for the 12% performance loss compared to the exploratory search. The impact of
mis-predictions is, in general, higher for auto-parallelized code as compared to
serial code. Still, the Geometric Mean of performance loss over the exploratory
search is rather small - 7.8%.

4 Related Work
Prior work such as the work by Fursin et. al. [15] presents an auto-tuning

framework that predicts good combinations of compiler flags to improve exe-
cution time. Their tool explores gcc and its flags and uses ML techniques to
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predict good optimizations based on program features. Another similar work,
the OpenTuner framework by Ansel et. al. [2], searches for the best performing
GCC/G++ flag combinations for C/C++ applications, in addition to searching
configurations for Halide and other domain specific applications. The above men-
tioned work by Fursin et. al. and Ansel et. al. explore different combinations of
code optimizer flags that has been extensively studied is orthogonal to our work.
Our work used the most recommended flag combinations for each code opti-
mizer. NeuroVectorizer [18] proposed an approach for handling loop vectoriza-
tion and an end-to-end solution using deep reinforcement learning (RL). It finds
two vectorization parameters via RL, the loop unrolling factor and the interleav-
ing factor. The results in [18] show a 1.33x average speedup over Polly on six of
the Polybench benchmarks. Interestingly, the MCompiler also had a speedup of
1.33x over Polly for these six benchmarks (even though the MCompiler had a
2.5x slowdown on one of the benchmarks due to aliasing issues). One can con-
jecture from this that additional factors, such as better loop transformations,
are the reasons for MCompiler speedups. Alternatively, if the two vectoriza-
tion parameters targeted by the NeuroVectorizer are indeed responsible for
the performance gains, then at least one of the optimizers in the MCompiler
framework already does it equally well. But not the same optimizer all the time.
One can also incorporate tools like the OpenTuner and NeuroVectorizer into
our framework and potentially obtain additional speedups.

5 Summary
This work presented a compilation framework, called the MCompiler , that

optimizes application hotspots for achieving better performance over state-of-
the-art compilers. The framework incorporates optimized loop nest code - serial
code, auto-parallelized code or OpenMP code - from a collection of state-of-
the-art code optimizers to generate a single executable. The framework can be
used with a exploratory search to choose the most suited code optimizer for the
loop nests. Exploratory search results showed that the MCompiler with six code
optimizers can significantly improve application performance.

The work also showed that one can replace the exploratory search with an
efficient Machine Learning based prediction for the most suited code optimizer
for a loop nest. The results show that the Machine Learning models can pre-
dict the most suited code optimizer with a small performance loss compared to
the exploratory search. The results also demonstrate that the hardware perfor-
mance counters can capture the inherent characteristics of the loop nests and
the Machine Learning models based on them make good decisions.

This framework can also be used as a tool for compiler researchers to incor-
porate and analyze the performance of their code optimization techniques and
compare to other code optimizers. MCompiler framework is open source3 and
is designed to be extendable with more code optimizers, optimizer flag combi-
nations and more features. More details about this work can be found in the
thesis [41].

3Available at https://github.com/ANIKET-SHIVAM/MCompiler
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