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Abstract. General-purpose memory allocators are made to perform
well on average for any given program. They thus make decisions which
can benefit a broad set of applications and can miss out on possible opti-
mizations. When a given general-purpose allocator does not fit the needs
of a program, the developer has a choice of either switching to a dif-
ferent allocator or writing a custom one from scratch. Both options can
be quite costly, and can still fail to satisfy the developer’s requirements.
We propose a different approach to memory allocation: allocators are
automatically generated from the ground up for any given program and
optimized for the needed metric. We outline metrics of allocator perfor-
mance, present a taxonomy of single-threaded memory allocators, and
a framework for generating custom allocators based on the taxonomy.
We show that allocators generated in such way can match or outperform
general-purpose allocators and that different applications benefit from
different components of our taxonomy.

Keywords: Memory allocation · Program synthesis

1 Introduction

Memory allocator libraries need to perform well for any given program. The def-
inition of performing well, however, changes from program to program and from
user to user. General-purpose allocator libraries thus have to make the decisions
which can benefit a broad set of applications to satisfy as many requirements
as possible. It is then the job of the software engineer to determine if a given
allocator fits the needs of application, and if not, either switch to a different
memory allocator or write a custom one from scratch. Both solutions require a
lot of man-hours for careful experimentation, vast knowledge of the applications
codebase, and may still fail to satisfy the developer’s requirements.

We propose a different approach to memory allocation: instead of creating
a single general-purpose memory allocator, we automatically generate custom
allocator libraries for each application. This consists of two steps: analysing the
program’s behavior, and generating the best possible memory allocator. Our ap-
proach requires no effort or codebase knowledge from the developer, and results
in an allocator tailored to the needs of the application. In this paper, we focus
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on defining a taxonomy of single-threaded allocators and using it for allocator
generation, leaving best allocator selection based on program analysis for future
work.

2 A taxonomy of memory allocators

While well-studied, the problem of memory allocation still remains largely un-
solved. In this paper we improve on previous work [12] and present an updated
taxonomy of single-threaded memory allocation that lends itself to automatic
generation of application-specific allocators. Generating based on a taxonomy
instead of picking from a library of allocators gives us a larger pool to select
from in the future (257 variants currently, see section 4), better matching the
selection to the applications needs.

2.1 Allocator evaluation metrics

We define three metrics of allocator performance and evaluate each element of
our taxonomy based on them: speed (latency) of allocation; amount of wasted
memory (also known as fragmentation); and quality of allocation.

Speed of allocation directly impacts the program runtime, and can be critical
for real-time, server or interactive applications. An allocator wastes memory in
two ways: by storing metadata needed for correct operations of the allocator
(external fragmentation), and by rounding up requested sizes, again, for ease and
correctness of operation (internal fragmentation). While running out of memory
is no longer the biggest concern (with some notable exceptions, see e.g. [7]), an
allocator that wastes a lot of memory will also have greater allocation latency
due to frequent memory requests to the OS. Lastly, by quality of allocation we
mean the impact an allocator has on the program runtime excluding allocation
latency. We think quality of allocation is affected by two factors: since it is the
allocator that determines the address of a returned object, it dictates program
locality to a limited extent; and each allocation/deallocation also involves the
allocator accessing its internal data structures, which may impact the program’s
cache state.

2.2 Top levels of the taxonomy

The user program interfaces the memory allocator by asking to allocate empty
memory blocks of given sizes or deallocate previously allocated memory. Deallo-
cation is meant to “return” memory to the allocator and allow for future reuse -
however, it is up to the allocator library to decide how to reuse the memory. The
most extreme policy in this case is to give up tracking already allocated blocks,
and thus give up memory reuse altogether. While this policy significantly sim-
plifies allocator operations (deallocation cannot and does not update any block
metadata), it does not necessarily lead to improvements in performance since
more time is spent fetching memory from the OS as allocations happen. Note



Generating memory allocators from the ground up 3

also that the minimum metadata needed for memory block reuse is its size and
whether it is free or not - giving up either is equivalent to not tracking the blocks
at all. We put the decision of whether or not to keep track of memory blocks at
the top of our taxonomy since it significantly impacts the number and usefulness
of other possible policies. The next level of our taxonomy focuses on allocator
components needed for internal allocator operations: efficient empty block search
via segregation, and block metadata storage.

There are three ways of storing block metadata: in headers per-block, in head-
ers per a collection of blocks (we call this a superblock), or implicitly. Per-block
headers allow the allocator to reduce internal fragmentation by closely matching
block size to the requested size, but waste a constant amount of memory for each
allocation. Per-superblock headers reduce external fragmentation by not track-
ing individual block sizes - all blocks in a given superblock are of the same size
- but may increase internal fragmentation due to size rounding. Implicit buddy
systems waste no memory for headers by splitting up the allocation space in a
way that allows to determine the size of an object from its address, but may
suffer from internal fragmentation dictated by the allocation partitioning rule.

All three ways of storing metadata benefit from size segregation - given a set
of size classes SC, all requests for size n are grouped into a size class i, SC[i -
1] < n ≤ SC[i]. Size classes in buddy systems is what determines the allocation
space partitioning - they are defined by the buddy system itself and are thus
limited. In block-based systems they are used to optimize search time by only
searching through the blocks that are guaranteed to be of requested size or more.
In superblock-based systems, size classes are used to reduce fragmentation and
search time by not having a separate superblock list for each possible size. In
the two latter systems, size classes are defined at design time (analysis time in
our case). Size classes can be further split into size class categories (e.g. small,
medium, huge, etc.), and use a different set of algorithms for each category.
Note that size segregation is not necessary for block-based or superblock-based
systems, however it provides a number of significant benefits, while having no
noticeable drawbacks.

3 Three most used allocator categories

Block metadata

Segregated lists
per-superblock

Buddy systems
implicit

Segregated fits

per-block

SB algorithm

Bin algorithm
Cache empty

SB?

Pagemap Algorithm

List search

algorithm
Coalesce? Search all bins?

Fig. 1: Component diagram of the three categories
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Combining block metadata storage options with segregation by size gives the
three most used and well-studied allocator categories: segregated lists, segregated
fits and buddy systems. Each category has multiple independent components
required for operation, which are shown in Figure 1. This section studies the
three categories more closely.

3.1 Superblock-based systems

Superblock-based size-segregated algorithms (also called segregated lists) are
the most common algorithms used in modern memory allocators. Their main
advantage is the level of control they provide - moving superblocks around is
relatively inexpensive, and so it is easy to enforce the needed allocation policy
on a range of blocks (e.g. one that focuses on locality). Their main disadvantages
are constant external fragmentation that depends on the structure of the header
and internal fragmentation which can limited by the set of size classes picked
(e.g. 25% on average [14,15]).

First we outline the general operations of a superblock-based system. Su-
perblocks are stored in size-segregated lists called bins. On allocation, the bin of
corresponding size class is searched through until a non-full superblock is found.
The choice of bin search algorithm influences search time and locality of allo-
cated objects. If all superblocks in the bin are full, a new one needs to be created
by either requesting more memory from the OS or reusing previously requested
memory, and then reinitializing the header. Superblock creation is quite costly
in terms of time, so allocators try to avoid it by, for example, increasing the
size of the superblock. Once a non-full superblock is found, an empty block is
unlinked from it using the information in the superblocks header. Superblock
header algorithms have to trade off external fragmentation, speed of allocation,
and locality. Header size depends on the algorithm, and introduces constant ex-
ternal fragmentation for each superblock. Additionally, how the superblock keeps
track of empty blocks affects the speed of block search. Lastly, since superblocks
usually span multiple pages, the choice of which block to unlink can influence
program locality. After the block is unlinked, it is marked in a special shared
structure called pagemap. On deallocation, the pagemap is used to quickly look
up the superblock header, saving time on search. The choice of how pagemap
is implemented affects external fragmentation due to memory needed for the
pagemap and the speed of marking or looking up allocated blocks.

Bin algorithm. If the bin is implemented as an unordered list, the lookup is
linear in the number of superblocks, and object locality is best for programs that
continuously allocate. To increase locality, superblocks in the bin can be ordered
in some way - for example, by access time or by superblock fullness. When
ordering by access time, last accessed superblocks are moved to the front of the
list, emulating temporal locality. Ordering by fullness prioritizes allocating from
more filled superblocks. In terms of locality, this policy is more likely to benefit
programs where objects are allocated for a phase and then mostly deallocated.
We implement fullness ordering in two ways: by making each bin an array and
segregating the superblocks a second time, this time by fullness; or by keeping
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the bin as a single list, sorted by fullness. Lastly, we combine the two orderings
into a bin algorithm that has an array of fullness-segregated lists per bin, where
each list is then further ordered by access time.

Superblock algorithm. Superblock algorithms are responsible for keeping
track of empty blocks in the superblock using the metadata in the header. The
simplest superblock algorithm gives up on tracking block status altogether: the
header consists of a single pointer, which is bumped up on every allocation re-
quest until all blocks are allocated, and deallocation does not update the header
at all. Allocation and deallocation are thus very fast, however the superblock can-
not be reused when all the blocks are exhausted, possibly wasting large amounts
of freed memory. The latter can be reduced without sacrificing much of alloca-
tion or deallocation time by keeping track of the number of deallocated blocks
and clearing the header when all have been returned (this is similar in operation
to reaps [16]).

More sophisticated algorithms keep track of each individual block. One of
such algorithm uses a bitmap with each bit corresponding to the state of a
block. While deallocation is fast, the algorithm has multiple problems: the size
of the bitmap is linear in the number of blocks, and as the superblock becomes
full, allocation time increases (a 16KB superblock with 8 byte blocks would have
a 256 byte bitmap, or O(256) byte-table lookups). Another algorithm creates a
stack of empty blocks by storing pointers to next blocks in the blocks themselves.
Implemented naively, this algorithm would have to put all empty blocks on the
stack during superblock initialization, further increasing superblock creation la-
tency. Instead we implement a variant of it, which we call Bump Stack, which
acts as the bump algorithm until all blocks have been allocated once, with the
stack being initalized implicitly when blocks are deallocated. The possible draw-
back of stack-based algorithms is that its operations access the blocks memory
as well as the header, which may negatively influence program locality.

Pagemap algorithm. In superblock-based algorithms, when freeing mem-
ory, there is no simple (arithmetic) way of finding the block’s superblock header.
A pagemap, an additional data structure that maps page addresses to pointers to
superblocks, is employed for this purpose. Such mapping is theoretically quite ex-
pensive in terms of memory required - on a 64-bit system (x86-64 or arm64 specif-
ically) with 4KB pages, the pagemap needs to store at most 264−12−16 = 236

values, which, given each element is a pointer, would require 244 bytes of mem-
ory. However, due to virtualization, the memory needed for the pagemap is only
mapped to physical pages when the pagemap is written to, thus the actual
amount of memory mapped for the structure is small in practice. We implement
three most commonly used pagemap algorithms: array, 2-level and 3-level radix
trees. Array pagemap requests memory from the OS once at initialization, and
uses pointers bitshifted by the number of bits in a page as keys. Radix tree
pagemaps instead request memory on-demand for each tree level, with different
parts of the address being used as keys for each level. They thus spread the costly
pagemap initialization time throughout the program’s runtime, but require more
time per each mark/get request due to indirection.
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Software cache for empty superblocks. Superblock creation is a two-step
process - first, a new chunk of memory is obtained, then the superblock header
is initialized. The simplest way of getting more memory is requesting it from
the OS via a system call, which is generally costly. To reduce the number of OS
calls, empty superblocks can be reused: if a superblock becomes empty, it can be
immediately removed from its bin and put on a separate list - a superblock cache.
Requests for more memory are first served from this superblock cache, leaving
OS as a fallback if the cache is empty. For some applications, this policy can
be too aggressive, and result in constant movement of superblocks, and costly
reinitialization of their header. Superblocks can thus be instead cached lazily
- if a superblock becomes empty, its address is marked in the cache, but it is
not removed from its bin. If an object is later allocated from the superblock,
it is unmarked from the cache. However, if a new superblock is needed, the
marked superblock is removed from its bin and given to the requester. This saves
time by reducing superblock movement, but wastes time marking/unmarking
superblocks.

Large allocations. We call allocations of size larger than the largest size
class large allocations. Because they are infrequent and can differ vastly in size,
memory for large allocations is requested directly from the OS, and then un-
mapped on deallocation. Bookkeeping is done through the pagemap: since it
stores pointers to pages, last 12 bits can be used to store additional data. Of
these bits, we use the most significant bit to indicate whether the allocation is
large or not.

3.2 Block-based systems

Block-based algorithms (segregated fits) aim to reduce internal fragmentation
by allocating blocks of exact size, which may involve splitting or coalescing of
blocks to satisfy the request. In practice, running out of memory is not much
of an issue anymore, and it is hard to implement complex policies for block-
based algorithms - this made newer memory allocators move away from these
algorithms. In the context of allocator generation, however, they are still worth
looking at.

Block headers need to store size and status of the block as well as adjacent
blocks, which can be done effectively by using boundary tags [11]. On allocation,
segregated fits algorithms start by finding an empty block of the needed size
class. To significantly reduce this search time, the header may store list pointers
to free blocks of the same size class. The algorithm used to search for an empty
block influences the search speed and the locality of the allocated pointer. The
found block may be of a bigger than needed size - in that case, it is split in two,
and the remainder is put in a corresponding bin. If there are no empty blocks
satisfying the request, a new block must be created. New blocks are carved from
the “top” (also sometimes called the wilderness) - a chunk of raw memory shared
between all bins. Lastly, the header of the block is updated to indicate it is not
free anymore, and the block is returned to the user program.
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On deallocation, the blocks header is at a known offset from the block, thus
finding it is easy and inexpensive. The header is updated, after which the block
may be coalesced with adjacent blocks if they are free, and put into the bin of
corresponding size. Coalescing aims to increase the chance of block reuse, but
may lead to increased search times for blocks of small sizes, as it moves freed
blocks to bins of larger sizes.

List search algorithms. While many list search algorithms exist, we choose
to implement only two: First Fit and Best Fit. These algorithms are sound, well
tested, and used in real memory allocators [1]. First Fit stops the list search
when the first empty block of fitting size is found. In size-segregated fits this
essentially transforms each bin into a stack, with the search always stopping at
the top block. The search is fast, however leads to frequent block splitting. Best
Fit instead only stops the search when the smallest empty fitting block is found.
Note that in the presence of size classes, the requested size can be rounded up, so
Best Fit in segregated fits is sometimes called Good Fit instead – the returned
blocks do not have to be smallest fitting in general, but are instead smallest
fitting in some size class. The problem with this algorithm is that in a naive list
implementation, the whole list needs to be searched on every allocation. Thus,
we instead implement it on top of a Red-Black Tree. When using a Red-Black
tree, finding the smallest fitting block is just traversing the tree left until a leaf
is reached, which is a O(logN) operation. Storing block size increases the header
size due to adding new fields to the header - now children and parent pointers,
as well as color, need to be stored.

Block coalescing. Block coalescing happens on deallocation and merges
consecutive blocks together. It can create a single block out of up to three blocks
(if previous and next blocks are free), and optionally increase “top” size (if
current or next block is “top”). Note that coalescing can be quite expensive as it
not only involves updating the block headers, but also unlinking the previously-
freed blocks from their bins.

While coalescing aims to reduce fragmentation and increase reuse by making
it more likely that a previously deallocated block matches the requested size, in
segregated fits it creates a non-trivial tradeoff space. In the presence of coalesc-
ing, block sizes tend to increase (as consecutive blocks are deallocated), which
means that bins of larger size classes get fuller while bins of smaller size classes
get less full over time. To amortize for coalescing, we keep it optional, and im-
plement a variant of free block search which goes through all bins of fitting size
in order instead of only looking at one. This theoretically increases the chance of
block reuse, as well as keeps blocks from constantly groving, but can significantly
increase free block search time.

Large allocations. Large allocations can be handled via pagemap as de-
scribed in Section 3.1, or alternatively by using the block header to determine if
the allocation is small or large.
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3.3 Buddy systems

Buddy systems partition allocation space according to some buddy rule, which
allows them to determine a blocks size from its address. Each memory block has
a buddy - a unique neighbor. Block splitting and coalescing can only happen with
buddies, and thus block sizes are limited by the buddy rule chosen. The blocks
are further organized in superblocks with variable block sizes. Superblocks are
needed to determine if a block is allocated or free - this information is stored in
a header bitmap. The top-level data structure is a single bin of such superblocks.
The main drawback of buddy systems comes from the strictness of the buddy
rule: picking an unfitting rule may lead to large amounts of fragmentation, and
adhering to the rule gets more costly time-wise as the rule gets more complex.

Buddy rule. Buddy rule dictates how the address space is split up, and
what the size classes of the allocator are. One rule we study is the Binary Buddy
rule, which we pick since it is used in a modern general-purpose allocator [13].
More sophisticated rules are outlined nicely in Wilson’s survey [12]. Compared
to Binary Buddies, they sacrifice speed splitting, coalescing and finding buddies
to reduce internal fragmentation.

Binary Buddies use powers of 2 as size classes. This makes finding a buddy
fast - it is always a power of 2 bytes away from the block. This rule can, however,
suffer from both external and internal fragmentation. External fragmentation
comes from the superblock header: memory given to the superblock must be
aligned to a power of 2 for the rule to work, thus the superblock header must
be stored on a separate page. In our current implementation, the header size
totals to 720 bytes, which wastes 3.3KB bytes per superblock. Note that this
can be solved by packing multiple superblock headers together on one page.
Internal fragmentation, stems from the buddy rule directly. Using power of 2
size classes for 32KB blocks results in average internal fragmentation of 5KB
(25% in relative terms), and maximum internal fragmentation of 16KB.

Superblock ordering, caching and large allocations. All bin, cache
and large allocation algorithms described in Section 3.1 apply. For fullness-based
bins, how full a superblock is redefined to be the biggest size a superblock can
allocate. Just as for size-segregated lists, choice of the bin algorithm influences
search time and locality. Caching empty superblocks can also decrease latency
of new superblock creation, however since in buddy systems superblocks hold
variably sized blocks they are less likely to become fully empty, thus reducing
effectiveness of a cache.

4 Experimental results

4.1 Allocator generation

We implement all allocator components in C++. The hierarchical nature of the
taxonomy is mirrored by use of templates, e.g. each bin algorithm takes a su-
perblock algorithm as a template parameter. Allocator generation is straight-
forward and done with the use of compile-time macros, which allows us to
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quickly enumerate the whole taxonomy when needed. In total, we can gener-
ate 257 different memory allocators from our taxonomy - 180 superblock-based,
32 block-based, and 45 using buddy systems. For superblock-based and block-
based allocators, we take our size classes from jemalloc [2] - the set used was
shown to be generally good both in jemalloc and other memory allocators [14].
For superblock-based allocators, we use 32KB superblocks (36KB for binary
buddies), and we use one bin + superblock combination for all size classes.

4.2 Methodology

We use a suite of real-world applications for benchmarking, presented in Table
1. We generate all possible allocators for each application, and evaluate them
on program runtime, as well as allocation latency. We compare the generated
allocators to 6 different general purpose allocators: ptmalloc [1], jemalloc [2],
tcmalloc [3], Hoard [4], snmalloc [5] (version 0.5.3), and SuperMalloc [15] on a
system with Intel i9-10980XE CPU and 64GB DRAM running CentOS 7.9.2009.
We run each allocator-benchmark combination 25 times and take the average of
all runs.

Table 1: List of benchmarks. # Requests is the sum of malloc and free requests.
Benchmark Domain # Requests Description

make Compilation 7216 Build system. Builds itself
cfrac Math 24554 Factors large numbers

pycparsing Scripting 26539
Python library for parsing C99 grammar.
Input script parses a 4KB C file into an
AST and back to C

tar Compression 147665
Uncompresses and extracts from a 26MB
tar gzip file

graphchi Graphs 226507
Computing strongly connected
components. Runs on ego-Facebook
from SNAP

coqc Compilation 332821 Coq library compiler

coqtop-bytecode Compilation 424208
Coq bytecode interpreter loading a large
library

sis Simulation
505541
1597162

Synthesis of synchronous and
asynchronous circuits. Run on two
different input files

perl Scripting 2246026
Input script formats words in a
dictionary into paragraphs

daggen Graphs 2322996
Generation of random synthetic task
graphs

espresso Optimization 3383710 Circuit logic optimizer

pyparsing html Scripting 3535154
Python library for parsing. Input script
removes tags from an HTML file

gs Scripting 4003800 Ghostscript, a Postscript interpreter
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4.3 Results

Results of performance testing are shown in Figure 2. We measure performance
based on three metrics - overall runtime, latency of allocation, and fragmenta-
tion - and manually pick the best generated allocator for the given metric. The
results confirm that custom allocators can match or outperform general-purpose
allocators (also shown in [9,18]), while also showing that such custom allocators
do not have to be written from scratch, but can instead be genereted from a tax-
onomy. Notably, while our generated allocators have low fragmentation, it does
not directly translate into decrease in runtime, confirming our assumption that
fragmentation is not as important on modern systems. Additionally, we show
that allocators can be generated to specifically benefit the desired metric, and
that the metrics are very sensitive to allocator changes.

Figure 3 shows the distribution of component implementations used in top
15 allocators for each benchmark. In general, each benchmark benefits from
different implementations, proving that different applications interact with a
memory allocator differently, and that custom-made generated allocators can be
a major contributor to performance.

There are, however, some outliers in the distribution of algorithms. Firstly,
54% of all presented allocators use no superblock caching. We view this as reason-
able - only some applications benefit greatly from the optimization (e.g. cfrac,
daggen, pyparsing html) due to superblock caching being an extra optimiza-
tion added on top of the normal superblock-based allocator. Among bin algo-
rithms, segregated fits are used 29.5% of time due to several benchmarks (make,
graphchi scc, pycparser) having a particular affinity to it. Access-ordered bin is
used 24% of the time - it emulates temporal locality, so more applications are
likely to benefit from it. On the other hand, combined fullness and access bin
is only used 5.2% of the time - we think this is due to its multi-step orderings
increasing the overall latency of allocation, erasing most benefits from increased
locality. Lastly, a clear best among block or superblock algorithms is the Bump
Stack, used in 37% of allocators. Bump Stack manages to address issues with
other superblock algorithms, almost always making it a good pick - it is very
fast for first allocations to the superblock, keeps track of individual blocks, and
has constant-time allocation and deallocation in general.

5 Previous work

5.1 General-purpose allocators

To demonstrate generality of our taxonomy, we present how a variety of modern
general-purpose allocators fit into it. ptmalloc [1], the default allocator of glibc,
uses size-segregated fits with best fit algorithm, coalescing and no pagemap.
jemalloc [2], the default allocator for FreeBSD as well as Firefox, uses bitmapped
superblocks for sizes less than a page, a binary buddy system for sizes less than
2MB, and a red-black tree for large allocations. tcmalloc [3], developed by Google
and running on their server fleet, implements superblocks as resizable arrays
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Fig. 2: Runtime and latency speedup of best generated allocator compared to
best existing allocator. Red column highlights the average across all benchmarks.
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Fig. 3: Component implementations used in top 15 allocators for program run-
time for each benchmark

(vectors), with large allocations handled via pagemap. Hoard [4] uses superblocks
ordered by fullness with bitmap-based superblocks. snmalloc [5] has unordered
size-segregated lists with stack-based superblocks for medium sizes and bump
stack superblocks for small sizes; large allocations are handled via pagemap.
SuperMalloc [15] is implemented as segregated lists with fullness-ordered bins
(implemented as superblock heaps) and bitmap-based superblocks, with large
allocations stored in a lists. Mimalloc [23] has superblocks with multiple stacks
in them, with each stack being used for different purposes (e.g. stacks for memory
freed by local or remote thread).

5.2 Application-aware allocators

A number of previous works look into creating application-specific allocators
that pack objects with similar properties together. In these, object or alloca-
tion site properties are collected by profiling, and interesting allocation sites are
remembered and instrumented to allocate from particular blocks/superblocks.
Allocation of other objects is usually offloaded to an existing allocator. Zorn looks
separately at grouping allocations together by logical lifetime [17], frequent al-
location sizes [18], and whether they are highly referenced or short lived [19].
Chilimbi and Shaham [20] find frequently repeating reference patterns to allo-
cation sites (“hot streams”), and co-locate objects from one hot stream. Addi-
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tionally, one of Chilimbi’s previous works, ccmalloc [21] uses allocation hints to
closely allocate related objects (e.g. parent and children in a tree). HALO [22]
groups objects of similar lifetimes together by injecting group-specific allocator
function by way of binary rewriting. LLAMA [6] is designed for server workloads,
where page reuse is essential. It uses machine learning to learn object lifetimes
from previous runs, and groups objects with similar lifetimes together. Tela-
Malloc [7] aims to work in low-memory environments, and statically determines
object position based on previously collected trace.

Other works looked into explicitly generating needed allocators from the
ground up. Risco-Martin et al. [8] represent allocators with a context free gram-
mar, and traverses the search space with a genetic algorithm, rerunning new
allocators on the collected trace to verify performance. Heap Layers [9] provides
an extendable framework for writing composable memory allocators.

6 Conclusions and future work

In this paper, we define a taxonomy of modern single-threaded allocators. We
use the taxonomy to automatically generate memory allocators and evaluate
them on a number of real applications. We show that allocator generation can
match or outperform general-purpose allocators, and that different applications
benefit from different components of our taxonomy.

For future work, we aim to automatically select a custom allocator based
on the application’s needs. This includes approaches such as profile-guided op-
timization and static analysis, with or without use of machine learning. Profile-
guided optimization was proven to work well in a number of previous works
(e.g. [18,19]), and works like LLAMA [6] have proven that machine learning can
help with the analysis. Static analysis for generation is not well explored, but we
believe it can be complementary to profile-guided optimization. Lastly, we aim
to expand our taxonomy, and thus generational capabilities, to multi-threaded
memory allocators.
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