
Quantum Circuit Resizing via Serial Execution

Movahhed Sadeghi, Soheil Khadirsharbiyani, Mahmut Taylan Kandemir

Pennsylvania State University
CSE Department

{mus883,szk921,mtk2}@psu.edu

Abstract. Quantum systems with limited physical qubits cannot execute
quantum circuits with more logical qubits than physically-available ones,
leading to compile-time errors. As it is unrealistic to expect quantum
systems to provide sufficient qubits in the near future, there is a pressing
need to explore strategies to execute large circuits on small systems, as
current systems are comparatively small in comparison to the needs of
the existing and emerging quantum algorithms/circuits. In this work, we
analyze quantum programs to identify qubits that can be reused mid-
program to execute the circuit with fewer qubits; this process is termed
as resizing or serialization. Based on our analysis, we then propose a
compiler-driven approach that selects the most beneficial qubits for circuit
resizing, and provide proof of work for the algorithm. The results with
our proposed circuit resizing indicate that it can i) execute large circuits
that cannot originally fit into small number of physical qubits in current
quantum systems, ii) significantly improve PST (Probability of Successful
Trial) by 2.1X, and iii) and 53% reduction in circuit execution time when
both the original and our serialized programs can fit into the target quantum
hardware.

Keywords: Quantum Computing, Reliability, Serial Execution, NISQ, Compiler

1 Introduction
Quantum computing is positioned to address the growing need for enhanced computa-
tional capacity in solving today’s highly complex problems such as machine learning,
cryptography, and computational chemistry. In recent years, various vendors have built
quantum hardware to benefit from quantum phenomena and execute quantum algorithms
on quantum systems. However, the practical applications of quantum computing are
limited today due to, primarily, low qubit counts and high errors.

Noisy Intermediate Scale Quantum Computers (NISQ) [10] have been designed to
execute small-to-medium circuits on current hardware. While several works targeting
NISQ machines have been introduced to reduce different types of errors [18,21,24,33,36],
getting reliable outputs from large circuits is still an unsolved problem. Furthermore,
a difficult aspect of quantum computing is the problem of operating a ’big’ quantum
circuit with many ’logical qubits’ on ’small’ quantum devices with a limited number
of ’physical qubits’. While in the classical computing domain there exist lots of works
focusing on recycling/reusing memory locations [30, 34], till recently, there had been no
mechanism to solve this problem for quantum circuits in general. However, quantum
vendors [14] have recently started to introduce the Middle Reset (MR) and Middle

2 M. Sadeghi et al.

Measurement (MM) gates, which can potentially be utilized to resize quantum circuits
(i.e., minimize the number of qubits needed) via ’serial execution’. By utilizing MR/MM,
theoretically, famous quantum algorithms like Bernstein-Vazirani [3] with any qubit
count can be executed using only 2 qubits [16]. Additionally, when running on 2 qubits,
no SWAP operations is needed since the 2 physical qubits to which the program is
assigned would normally have a connection between them, eliminating the gate error due
to SWAP operations in the process. This approach can be highly effective in improving
the system’s reliability. However, in order to employ MM gates, we need to verify that
MM gates are operated in isolation from other qubits, meaning that measurement on one
qubit should not affect other entangled qubits.

In this paper, first, we perform an analysis to identify the qubits that are most suitable
for circuit resizing. Our results reveal that, in most quantum programs, there exist
qubits that can be ’reused’ mid-program to serially execute the circuit employing ’fewer
qubits’. We further verify that MM gates are operated in isolation, and propose different
techniques to isolate them if the vendor does not implement them that way. Motivated by
these, we design, implement and evaluate a compiler-based approach that i) identifies the
qubits that can be most beneficial for serialized circuit execution; ii) selects those qubits
to reuse at each step of execution for size minimization of the circuit1; and iii) minimizes
the Middle Measurement (MM) delays due to impractical implementation of shots to
improve the circuit reliability. Furthermore, since our approach intends to execute a given
circuit in a serialized fashion, the ’crosstalk errors’ can also be optimized as a result of the
reduced number of concurrent gates. We present experimental evidence demonstrating
the effectiveness of our compiler-based approach. The experimental results collected
indicate that our proposed approach can i) execute large circuits that initially cannot fit
into small circuits, on small quantum hardware, and ii) significantly improve the PST
of the results by 2.1x iii) and 53% reduction in circuit execution time when both the
original and our serialized programs can fit into the target quantum hardware.

2 Background and Related Work
2.1 Quantum Computing Basics

Quantum computation is based on the concept of qubit, as opposed to classical computing,
which is based on bits. Compared to a classical bit which represents a value of 0 or
1, a qubit is a vector that holds a ’state’ between 0 and 1, which is defined as follows:
|ϕ⟩ = α|0⟩+ β |1⟩. This leads to an ’exponential growth’ in state space in terms of
the number of qubits [32]. For example, having two qubits gives us a state space of
|ϕ⟩=α00|00⟩+α01|01⟩+α10|10⟩+α11|11⟩. A quantum gate is the basic building block
of a quantum program/circuit. Quantum gates fall into two main categories: unitary gates
(e.g., rotational gates and X, Z, Y, H gates, etc.) and controlled unitary gates (e.g., CX,
CZ, CY, CCX gates, etc.). On current quantum hardware, a quantum gate that operates
on multiple qubits can execute only in the presence of a direct link between the involved
qubits. Qubits are prone to a variety of ’errors’, such as coherence error, gate error, and
crosstalk. On the other hand, gate errors occur because of the operations being performed
on qubits, and crosstalk errors occur due to the interaction between different qubits

1 In this paper, we will use the terms ’serializability’, ’sequential/serial execution’, ’circuit
reduction’, and ’circuit resizing’, interchangeably.

2. BACKGROUND AND RELATED WORK 3

during ’concurrently-running’ operations. Additionally, during measurement, one can
experience a readout error; this type of error affects the reliability of the outputs.

Current quantum computers –NISQ machines– rely heavily on SWAP operations
– gate operations that swap the state of two linked/neighboring qubits, to perform an
operation between two qubits that are not adjacent.

Current NISQ systems operate in a QAOA (Quantum Approximate Optimization
Algorithm) [8] fashion. QAOA is a paradigm that combines classical computers and
NISQ systems [8]. More specifically, a quantum program compiles into either a quantum
circuit or a batch of quantum circuits. At the end of the execution of each circuit, the
resulting qubits (output) are measured (read out) and their measured values are stored in
the ’classical computer memory’. Subsequently, the qubits are reset to a state of |0⟩ for
the next circuit to execute. Due to the ’probabilistic nature’ of quantum algorithms and
occurrence of physical errors, this process will be repeated multiple times –shots– and
result counts will aggregate to generate the final output.

2.2 Different Types of Dependencies in Quantum Computing

Qiskit [1] provides a directed acyclic graph (DAG) representation of the circuit, in which
roots and leaves represent qubits and other nodes represent gate operations. Additionally,
the edges indicate the qubits used by gate operations, as shown in the example of
Fig. 4. Note that this DAG representation i) provides an order for gate operations; ii)
indicates dependencies between qubits; iii) specifies parallel operations at each stage;
and iv) gives the critical depth of the circuit. While this DAG representation provides
the dependencies among different operations, it does not differentiate between ’false’
and ’true’ dependencies. False dependencies in DAG are those that originate from the
ordering of the gates, but they do not influence the subsequent qubit/operation, meaning
that changing their ordering does not affect the outcome of the circuit. However, true
dependencies can affect the final result of the system if they are violated, i.e., the order
of operations is changed. In Fig. 4, for example, the CNOT operation between q0 and q5
has no influence on the value of q1, following its CNOT operation with q5; but, in the
DAG, these two operations look ’dependent’, due to the sequence of the program.

False dependencies provide, in a sense, ’opportunities’ for changing the order of
operations and transforming circuits [22], to target different objective functions. Attaining
these false dependencies is easy during the early stages of compilation process; but, they
become impractical to detect during the execution of operations.

2.3 New Features: MM and MR

Starting in 2020, IBM Quantum systems (IBMQ) started to gradually include Middle
Measurement (MM) and Middle Reset (MR) gates into their quantum systems [16],
aiming to provide qubit reuse during the course of program execution. To our knowledge,
all IBMQ quantum systems currently support these features. In the early days of these
gates’ debut, IBMQ provided an instance of the Bernstein-Vazirani [3] circuit (a 5-
qubit version is depicted in Fig. 4) to demonstrate the possibility of serial execution of
quantum circuits for improved reliability [16]. This paper proposes a compiler-based
’circuit resizing/serialization’ approach that automates the disciplined use of MM/MR
so that a given quantum circuit can execute on fewer physical qubits in a serial fashion.

4 M. Sadeghi et al.

We want to emphasize that the MM/MR gates are not in the theoretical quantum gate-set
but are achievable via ’imperfections’ in the physical properties of the technology. In
reality, coherence error causes the qubit state to return to |0⟩. By overclocking a qubit,
the coherence error increases exponentially, causing the qubit to return to |0⟩ state faster,
allowing to achieve a reset gate (MR gate). Also, in theory, two ’entangled’ qubits will
remain entangled forever unless we explicitly disentangle them via extra logic. However,
in practice, two entangled qubits would become disentangled over time – dephasing –
allowing us for isolated measurements in case of an entanglement. Formally, we define
an MR gate as a gate that returns any state to |0⟩, and an MM gate as a gate that can
measure a qubit in isolation [16].

2.4 Related Work
While quantum computing is still in its infancy (in terms of both hardware or software),
its potential advantages over so-called classical computing for particular algorithms,
e.g., in the context of drug discovery, machine learning and prime factorization, are very
promising [17, 32]. Quantum systems are currently being heavily researched, and the
major efforts focus on the areas of compiler support [22, 23, 27, 31], operating system
support [29], and programming languages [5].

Compilation of quantum programs consists of three main stages: i) matrix-to-
gates conversion; ii) Intermediate Representation (IR) optimizations; and iii) logical-
to-physical qubit mapping and circuit execution. In this context, a matrix represents
a function/system which is applied on sample inputs (a vector of inputs) to generate
a final output (an output vector). In the first step, the matrix is translated into 1-qubit
and 2-qubits gates using an algorithm such as Fowler [9, 10]. If, on the other hand, the
programmer encodes the quantum circuit directly (i.e., if he/she inputs the gates instead
of the matrix), then this stage –Fowler gate production– can be omitted.

The second stage of a quantum compiler performs IR-level optimizations. Recent
studies have implemented a variety of LLVM-based optimizations aimed at various
domains [27]. For example, Paulihedral [22] is one of the most recent works; it pro-
poses retaining a gate matrix IR abstraction until the final stages of compilation in an
attempt to achieve some circuit optimizations, such as depth reduction, gate cancellation
optimization and swap reduction, by ignoring false dependencies between layers of
gate production and re-ordering the gate operations. This approach fits well to enhance
our work in the future, since discovering false dependencies at the final stage of com-
pilation (where our approach is embedded) can be challenging. It can also be used to
re-arrange the gate layers according to the volume of their true dependencies in order
to maximize serialization opportunities for future enhancements to our work to obtain
true dependencies. The last stage of the compilation of a quantum program involves
quantum circuit-level optimizations including the mapping of logical qubits to physical
qubits [18, 24, 28], gate cancellation, swap reduction, gate scheduling [26] and dynamic
decoupling [6].

3 Motivation and Problem Definition
This section describes the three main factors that have motivated us to design a compiler-
based strategy for minimizing the size of a given quantum circuit.

3. MOTIVATION AND PROBLEM DEFINITION 5

3.1 Size Limitation in NISQ Systems

The continuous demand for more processing power requires the development of quantum
computers with large number of physical qubits. Furthermore, the notable absence of a
physical ’quantum memory’ places the whole processing weight on qubits. With all these
demands for more qubits on quantum computers, the reliability of physical qubits as well
as that of their connecting links remain as the main issue. Furthermore, as the system
grows in size, the reliability degradation becomes even harder to avoid. This results in a
decrease in the number of links between qubits to eliminate crosstalk noise [2], and as a
result, leads to more scattered/distributed qubits, lowering the qubit processing speeds.
While, owing to the exponential expansion of processing power, this cost of processing
speed may not be the primary concern, the decrease in the number of links in larger
NISQ systems forces the inclusion of multiple extra SWAP operations to execute a given
quantum circuit.

3.2 Reliability Concerns with Larger Systems

The majority of qubits in current IBMQ system architectures, for example, have two
links, whereas a few have one or three links [14]. Also, a large quantum circuit will
typically have various ’controlled gate’ operations, necessitating the use of numerous
SWAP gates to complete the execution. This not only results in extra gate errors but also
in excessive crosstalk and coherence errors.

For example, executing a 12-qubit circuit like Bernstein-Vazirani [3], which can be
categorized as one of the relatively simple ’medium-size’ quantum circuits, on a sample
IBMQ device results in entirely unreliable outputs (a fidelity of 0.007 is reported in [16]).
However, by serial execution, the fidelity can increase up to 0.31 (40x compared to the
prior case [16]). Consequently, there is a strong motivation for exploring strategies that
serialize a given quantum circuit in the absence of a quantum memory, from a reliability
viewpoint as well. However, it is important to verify that MM gates are operated in
isolation and do not affect the other qubits when measuring a qubits.

3.3 Viability of Isolating MM Gates

One of the most important constraints on the implementation of MM gates is that, ideally,
they should have no effect on the entangled qubits to maintain output correctness. To
achieve such isolation, the underlying hardware can i) turn off the links connected to
the target qubit/reduce the frequency of entangled qubits; ii) similar to middle reset,
use decoherence error to disentangle the entangled qubits via dephasing [35]; or iii)
use SWAP to move the target qubit to a node isolated from its entangled ones, if the
system is not fully-connected (akin to removing a link). While the exact implementation
of this gate on current systems remains unknown, any hardware that does not support
MM in isolation can use one of the three techniques mentioned above to ensure output
correctness.

In order to verify that the current middle measurement gates are isolating the qubits
from one another, we have designed two distinct circuits, illustrated in Figure 1. The
results of both circuits are essentially identical; however, their methods for ensuring that
the qubits are not measured simultaneously are different. If the middle measurement is
not performed in isolation, upon measuring q1 (should be equal to |1⟩), q0 would also be

6 M. Sadeghi et al.

Fig. 1: Checking the functionality of MM (a) by using barrier between measurement
operations on ibm_oslo and (b) by applying delay gate in correct placement post-transpile
on ibmq_belem.

Fig. 2: (a) & (b) ’Unresizable’ Circuits, (c) ’Resizable’ Circuit

measured. Since the state of q0 after CNOT is equal to |+⟩, both |0⟩ and |1⟩ would be
reported with the same probability upon measurement. Then, by applying the Hadamard
gate, we can either reach |−⟩ (if q0 is measured as |1⟩) or |+⟩ (if q0 is measured as
|0⟩). In both the instances, the measurement results will report |0⟩ and |1⟩ with equal
probability. This indicates that the result of our circuit, when the middle measurement is
not operated in isolation, should be between |10⟩ and |11⟩ with a probability of 50%. In
contrast, if MM is performed in isolation, the measurement would have no effect on q0’s
state, and q0 would retain its |+⟩ state after the measurement. By applying the Hadamard
gate, q0 would report the state |0⟩. The result of our circuit, when MM is executed in
isolation, would be |10⟩ with a 100% chance. Therefore, based on the results, we can
verify if the MM is operated in isolation or not. In both the cases of entanglements in
Fig. 1, |10⟩ is obtained with the highest probability, indicating that the MM gates are
operated in isolation.

3.4 How to Resize the Circuit via the MM and MR Gates?

The first step in building a circuit for the current NISQ machines is to define the
required number of qubits and classical registers for measurement. The programmer/user
encounters an error if the number of qubits in the circuit to be implemented exceeds the
system size. For instance, defining a Bernstein-Vazirani circuit with a size of 10 ’logical
qubits’ and attempting to execute it on a system with 7 ’physical qubits’ results in a
’compilation error’. Although in principle the Bernstein-Vazirani circuit of any size can
be executed sequentially using no more than 2 qubits via the employment of the MM and
MR gates [16], coherence errors would put a cap on the maximum size of this circuit.

4. OVERALL DESIGN 7

Note that gates involving more than two or three qubits (like those in Fig.2) do not
exist in current hardware and are typically implemented via multiple existing physical
controlled-gates. This means that achieving full entanglement is doable via sequential
approach, like the circuit depicted in Fig. 3 (linear entanglement), which is resizable.
This approach holds promise in reducing dependencies and amplifying serialization. It
is crucial to clarify that, though entanglement may result in dependencies, it should
not be mistaken as a dependency itself.

Our goal in this paper is to minimize the size of a given quantum circuit by running
it in a serial/sequential manner via the employment of the MM and MR gates, and
also to increase the output reliability for circuits executing in architectures with limited
number of links per qubit. Thus, our main novelties include i) giving a polynomial time
algorithm to minimize the size of a given quantum circuit (i.e., maximize serialization); ii)
providing an implementation of this algorithm and proving that it does indeed minimize
the input circuit; and iii) avoiding the potential reliability issues that could arise from the
delays of the MM gates, which can happen through multiple shots.

4 Overall Design
As mentioned before, the constraint for serialization can be expressed as follows:

A circuit is ’serializable’ if and only if there exists a qubit that can complete
its final gate operation without the need of all other qubits on the circuit.

Fig. 3 shows a serializable circuit and its serial execution with the minimum necessary
qubits. whereas Fig. 2 depicts two circuits that do not meet our requirement. In Fig. 2-a,
none of the qubits can complete its operation without activating the remaining qubits. On
the other hand, in the circuit shown in Fig 3, q0 can complete its task with the assistance
of only q1. Therefore, the first circuit should be executed in parallel, while the second
circuit can be serialized (i.e., its size can be reduced).

Fig. 3: A sample cat_state_n4 circuit and its serial execution.

4.1 Requirements for Circuit Size Reduction

First, let us discuss the use-cases for which the MM/MR gates are expected to be
beneficial. The MM gate enables users to measure a qubit after it has completed its final
action , whereas the MR gate is utilized to reset it to a |0⟩ state. Together, these two
operations enable any result qubits to be measured and reset so that they can be used by
the remaining qubits of the program.

Let us now discuss the reason behind why Fig. 2-a and Fig. 2-b are not resizable.
For the circuit illustrated in Fig. 2-a, we can see that none of the qubits can perform its
task/operation in isolation from the other qubits, owing to the gate that entangles them
all (i.e., full entanglement). Therefore, resetting any of these qubits is not beneficial for
serialization. Fig. 2-b, on the other hand, shows a more complex circuit to demonstrate

8 M. Sadeghi et al.

the criteria that should be satisfied in order to serially execute a circuit as much as
possible. In this example, Q0 is used in OP1 and OP4, needing Q1 for its completion.
However, OP2 and OP3 should also be executed before we can reuse Q0 (OP2 and OP2
should finish before OP4), meaning that Q0 needs all the qubits to be available when it
finishes its last operation. Q1 has operations with all the other qubits, hence needs them
all. Q2 has operations with Q1 and Q3 (OP3 and OP2), still needing OP1 to be executed
beforehand, meaning it needs all the qubits to be available before its final operation, and
Q3 is similar to Q2. Therefore, we cannot reuse any of these qubits, eliminating the
possibility that they can be used as a choice for resizing the circuit. This also means we
need to find the dependencies between qubits.

The most beneficial qubits for resizing/serializing a given quantum circuit are those
qubits that can complete their tasks with the help of the minimum number of other qubits,
i.e., least dependencies. By prioritizing the qubits based on the number of dependencies
in our algorithm, we reduce the circuit size as much as possible. Therefore, in our
algorithm, we introduce an additional constraint aiming at maximizing the improvement
(note that this is not a constraint for resizability of the circuit; rather, it is a constraint to
be satisfied to maximize the potential improvements from circuit resizing):

The best nominee for resizing a circuit is the qubit that is least-dependent
on other qubits.

One way of finding these qubits is to use a circuit DAG, as a DAG precisely captures
the sequence of operations, dependencies, and the stage (in the circuit) at which each
qubit completes its task. However, the DAG does not capture ’false dependencies’, which
are not important for us due to the following reasons: i) finding false dependencies is
exponentially complex for a given circuit and has polynomial complexity in the IR-
levels of compilation; ii) false dependencies can only cause an adverse effect in our
circuit minimization algorithm in one case, which is not expected to be frequent. We
further elaborate on this in Section 4.3; and iii) our main goal is to minimize the circuit
only through changes in the execution strategy, not through the changes in the circuit
itself or its gate operation order. Note that, our algorithm can perform both with true
dependencies and DAG dependencies as inputs. Providing an efficient algorithm to
obtain true dependencies as an input to the algorithm is left to a future study.

4.2 Our Proposed Algorithm for Circuit Minimization

This section introduces our approach and goes through an example scenario step-by-step
to demonstrate how it works in practice. Algorithm 1 gives our proposed algorithm for
quantum circuit resizing. To begin, we look for a qubit with the least dependency. We
obtain this information by tracing back the DAG for each qubit from leaf to root. We add
the gate operations required before the chosen qubit completes its task, keeping track of
the total number of gate operations added in each qubit line. Then, we deduct this value
from the total number of gate operations performed in each of the activated qubits by
the added gates. This is done mainly to avoid repeating the gate operations to maintain
the correct circuit. Note that, when this value reaches zero, we perform the MM/MR
procedure. We update the dependency lists by deleting the qubits that have already been
allocated from the current lists, and select the new qubit with the least dependency to

4. OVERALL DESIGN 9

Fig. 4: (a) 5-qubit Bernstein-Vazirani circuit, (b) Corresponding directed acyclic graph
(DAG), and (c) Our serialized version.
load on the reset qubit. Thus, we prioritize serialization by decreasing the number of
added qubits in each iteration as little as possible.

Fig. 4 shows an example application of our proposed algorithm on an example
Bernstein-Vazirani circuit. In this example, D− list for q0 is [q0,q5]; and for q1, it is
[q1,q5,q0]. Also, D− list for q2 is [q2]; for q3, it is [q3]; for q4, it is [q4]; and finally, for q5,
D− list is [q5,q1,q0]. Now, we have the sorted L− list = [[q2], [q3], [q4], [q0,q5], [q1,q5-
,q0], [q5,q1,q0]] as described, the first element in the L− list is [q2], and we assign all
the qubits in the dependency list to the first available physical qubits, which in this
case means only assigning q2 to first available physical qubit (Q0

2). We then remove
all the assigned qubits from all the elements in L− list, which means removing q2
from all the elements of L− list. Additionally, we also update the count list, which
shows the number of ’unexecuted’ operations for each qubit. In this case, all the 2
Hadamard gate operations for q2 have already been executed (count[q2] = 0), and we
perform the MM and MR operations on Q0 and look for a new qubit for assignment. The
new updated list is D− list = [[q3], [q4], [q0,q5], [q1,q5,q0], [q5,q1,q0]]. We perform
the same steps for q3 and q4, assigning them to the same physical qubit (Q0). After
these two steps, L− list becomes L− list = [[q0,q5], [q1,q5,q0], [q5,q1,q0]]. In the next
step, we choose [q0,q5], which is the element for q0. Since it contains more than one
qubit, we assign the first logical qubit (q0) to the reset qubit (Q0) and assign the second
logical qubit (q5) to the second available physical qubit (Q1). By scheduling the gates for
these two qubits and updating the list accordingly, count[q0] becomes 0, and count[q5]
becomes 1, meaning q0 is now ready for MM/MR. After the update, the new L− list
becomes L− list = [[q1], [q1]]. We choose the first element, [q1], and assign q1 to Q0.
After scheduling all the operations and updating the list, we see that both count[q1]
and count[q5] are equal to 0. This means that all the operations for both q1 and q5 are
executed, and we can measure and reset them using the MM and MR gates if needed.
Finally, we empty L− list, and the algorithm finishes.

4.3 Proof

We now present a formal proof showing that our proposed approach does indeed minimize
a given quantum circuit (size/number of qubits), changing only circuit execution and

2 Uppercase Q is for physical qubits

10 M. Sadeghi et al.

ignoring gate reordering/circuit-modifications based on false dependencies (we can also
feed the algorithm true dependencies, if they are provided by a previous layer such
as [22]).

Algorithm 1: Our proposed compiler algorithm for circuit resizing.
1 Input:
2 DAG circuit

3 Register:
4 D− list[q]←− List of dependencies for q

5 L− list[D]←− list of D− lists

6 Count[qi]←− List o f number o f q′isgateoperations

7 PQ−→ A flag list to show available physical qubits

8 Output:
9 New− circuit

10 for qubit in DAG do
11 D− list[qubit]←− [qubit]

12 Trace back in DAG from qubit leaf to root and append all interacted qubits

13 L− list.append(D− list)

14 L− list.sort(key = lambda i : len(i)) ; // sort this list of D-lists by list length

15 New− circuit←− φ

16 PQ←− Is a list of Size L-list first element, initialize to 0 meaning available

17 Algorithm:
18 if len(L-list[0]) == circuit’s number of qubits) then
19 print(circuit is not resizable)

20 New−Circuit = circuit

21 break
22 else
23 while (len(L-list) != 0) do
24 Chosen←− L− list.pop(0)

25 L− list = [[q for q in D− list if q not in Chosen] for D− list in L− list]

26 L− list.sort(key = lambda i : len(i))

; // Update the D-list elements of L-list based on the qubits that became
activated and resort the L-list to ensure minimum addition – if any – of
qubits will happen at each iteration

27 Assign logical qubit from Chosen to physical qubits available in PQ, add elements to PQ if Chosen can’t
fit in available

28 Update new PQ values to 1 meaning occupied

29 for qi in Chosen do
30 New−Circuit←− New−Circuit+ Add gate operations if gates are in Chosen –only–

31 Update count values in Count[q] list

32 if Count[qi] == 0 then
33 PQ[q]←− 0

We use proof by contradiction (this is a proof of size minimization due to a change in
execution, not a change in circuit): Please note that any addition of qubits at any stage
or iteration will permanently increase circuit size unless loaded on a reset qubit.
Suppose that qi is a qubit with more dependencies than the minimum dependency qm at
iteration k; so, it can lead to a smaller circuit than qm (S[qx] represents the qx dependency
list size). There are three different scenarios to consider:
• The qm dependency list is a subset of the qi dependency list. Obviously, in the depen-

dency list of qm, the first element is qm itself (it will be in the qi dependency list as

4. OVERALL DESIGN 11

well). Note that adding qi would increase the circuit size by S[qi]> S[qm] qubits per-
manently. Further, adding qm even right before qi would lead to S[qi] = S[qi] − S[qm]
and release qm for qi for use, thereby increasing the size of the circuit by at most
S[qm] + S[qi] − S[qm] − 1, leading to a smaller circuit, which is clearly a contradic-
tion.
• The qi and qm dependency lists have no intersection. In this case, they are like two

separate circuits (C1 and C2) we are trying to resize (in the example Bernstein-Vazirani
circuit above, based on the dependency lists, for our purposes, we can consider
[q0,q1,q5], [q2], [q3], [q4] as separate circuits), with C1 being the circuit with qi and C2
being the one that has qm. Since they are like two separate circuits, it is clear that any
minimization needs them to work in a serial fashion, meaning that either we start with
C1 and then load C2 or vice-versa. In both cases, irrespective of the selection order
of qm and qi, the final minimum-sized circuit will be of size Max{C1,C2}, leading
to the two cases with an equal number of physical qubits (not smaller) and will be a
contradiction.
• The qi and qm dependency lists intersect, but the qm dependency list is not a subset of

the qi dependency list. In this scenario, we have one of the following two cases:
• qm is an element of the qi dependency list, which is like qm dependency list is a

subset of qi dependency list case.
• qm is not an element of the qi dependency list. In this case, qm adds fewer qubits

than qi but guarantees at least one reset qubit, which provides one available qubit
for qi. It is worth to note that, due to the intersection of qm and qi dependency lists,
some elements of qi dependency list would have already been added to the target
circuit. Now, by adding the remaining elements of qi, a target circuit with the size
of qi dependency list is created, given that qm is already in the target circuit. Hence,
qm leads to a final circuit with same or less number of qubits compared to selecting
qi first, contradicting our assumption.

Therefore, by using contradiction, we prove that our algorithm can minimize the
size requirement if changing the order of operations is not considered (by only serial
execution).

4.4 Complexity Analysis of the Proposed Algorithm
We now study the timing complexity of our proposed algorithm. First, the algorithm
must extract the dependencies from the DAG of the circuit. As indicated in Section 2, the
roots and leaves of the DAG represent qubits; the remaining nodes represent gates; and
the edges capture the qubits of the corresponding gate operations. Assuming a circuit
with n qubits and m total gate operations, we need n qubits to check from leaf to root
and at most m operations to check for each qubit. Hence, this phase of our algorithm
takes O(nm) to complete.

The subsequent step of the algorithm consists of circuit resizing based on the de-
pendency lists of the qubits obtained in the previous phase and saved as a list of lists
named l-list. The outside loop is a while-loop on all n dependency lists of qubits, and
inside we sort this l-list based on the dependency list size (each dependency list is an
element of l-list), which accounts for O(n logn) and may be optimized to On if imple-
mented by locating the minimum size element of l-list at each iteration. Note that, each
iteration includes the addition of a maximum of m gates, and consequently, this phase

12 M. Sadeghi et al.

of the algorithm takes at most O(mn2 logn). Overall, the complexity of the algorithm
is: O(nm)+O(mn2 logn) = O(mn2 logn). For example, trying to resize a circuit of size
1000, with one million gates to 100 qubits, takes less than 10 seconds on an Intel core i7
6950X system.
4.5 Iterations vs Shots
As demonstrated in Section 4.4, there is an underlying issue in current quantum hardware
that needs to be carefully addressed. In current systems, the quantum circuit is executed
over multiple shots to attain the probability of success in achieving the correct distribution
of results [8]. However, we have observed that, when a circuit containing an MM gate is
executed using the same strategy, instead of running the circuit until the final operation,
the current systems [14] execute the MM gate for multiple shots upon encountering it,
collect the results and continue with the execution of the remainder of the circuit after
that. This causes the other qubits to be stalled for the number of shots multiplied by the
duration of the executed operations on the measured qubit, which can be substantial in
practice. Based on the numbers collected from a sample system of the new generation
of ibmq, ibmq_kolkata [14], the readout latency is 675µS and the best available T1/T2
for the qubits is 214µS (which is the best value available for this system). If the circuit
is stalled for 1000 shots, it means that the other qubits should wait for a minimum of
1000×675µS = 675mS, which is significantly higher than T1/T2 (more than 3000x),
causing the other qubits to get |0⟩ state in the process. We want to emphasize that none
of the current Dynamic Decoupling [6] techniques can handle an idle period of this
magnitude.

To solve this issue, instead of running a circuit over 1000 shots, we execute the
circuit using 1 shot and run this circuit in a for-loop for 1000 iterations. By doing so, we
solve the issue mentioned above while obtaining the final results. Note that, by using
this technique, we are not introducing any new significant change in the current systems;
rather, we provide a simple method for solving an issue related to current systems. We
would like to encourage the vendors to add the concept of "iterations" into their systems,
which can eliminate the need for unnecessary waiting in the queue (1000 shots would
translate to 1000 jobs). This can be done by tracking the existing job ID and executing
the whole circuit, instead of a portion of it, if the user specifies "iteration count" instead
of "shot count".

4.6 Comparison against Concurrent Works
There are two works recently published in arXiv, that also aim to reduce qubit require-
ments. One of these works [7] was applied on top of ion trap machines with all-to-all
connections in an effort to reduce resource usage. For smaller circuits, a SAT-based tech-
nique is used to determine optimal utilization, whereas a heuristic method is employed
for larger circuits. However, this study does not consider one of the main advantages
of our strategy, which is to minimize the number of SWAP operations. In addition,
our compiler-based approach can outperform the dynamic algorithm in [7] through
our greedy strategy, which has been proven to be optimal in this paper. The other
work [12, 13] explores a similar approach to fit a program in the selected hardware. Our
paper differs from that work in that i) we prove that our algorithm really minimizes the
circuit in a ’polynomial’ amount of time, whereas the mentioned work does not, and ii)
we check, via a separate experiment, whether the MM gates are operated in isolation (to

5. EXPERIMENTAL EVALUATION 13

avoid quantum measurement teleportation) to make sure the approach is correct and will
not ruin the algorithm logic, and we propose three techniques to achieve that.
5 Experimental Evaluation
We evaluate our proposal under two scenarios. Firstly, by using a small quantum hard-
ware, we serialize the circuits that do not normally fit into this hardware using our
technique. The goal here is to demonstrate that our approach can be used to execute
quantum circuits on quantum hardware with lower qubit capacities. Note that, by default
(without our approach) such circuits would not execute on the target (small) quantum
hardware. Secondly, using a larger quantum hardware, we evaluate and compare our
proposal (serialized circuits) to original circuits when both of them can be executed on
the quantum hardware. This scenario aims at giving a PST comparison of our proposal
against the normal (parallel) execution and at revealing the improvements we provide
due to the factors such as gate reduction.

5.1 Methodology

We evaluate the effectiveness of our approach using two IBMQ systems: ibmq_lima and
ibmq_kolkata [14]. ibmq_lima is a 5-qubit system that has a T-like network architecture.
For simulating ibmq_lima, we execute the experiment using FakelimaV2(), the most
recent simulator for the latter system supplied by Qiskit [1, 15].

For simulated ibmq_kolkata, we evaluated our results using FakekolkataV2(), which
is the fake-backend for the ibmq_Kolkata hardware. Note that ibmq_kolkata is a new
generation IBMQ system with 27 qubits, each having 1 to 3 links connected to it. We
used circuits from QASM [5] for our evaluation, which can be accessed at [20].

While our presented results are based on simulation, we want to emphasize that our
comparison is accurate since we eliminate most of the crosstalk by using serialization. It
is because crosstalk occurs when multiple qubits are operated concurrently by different
operations (mostly CNOTs) and since most of our quantum circuits can be executed
on 2-3 qubits, we are not facing any crosstalk in any of the results presented. For our
baseline (parallel execution), on the other hand, there may be some crosstalk cases that
are ignored; consequently, the baseline results we report can be ’overestimation’, in
terms of PST. Therefore, our benefits can be expected to be even higher in real quantum
hardware.

PST report on ibmq-lima
Circuit Name Qubit# in PE Qubit# in SE PST Total Gate# CNOT Gate# d1 d2 Execution time(mS)
bv_n14 [5] 14 2 51.2% 121 13 117 112 74.54
bv_n19 [5] 19 2 42.2% 166 18 162 157 103.18
wstate_n27 [5] 27 3 35.4% 593 124 182 17 189.21
ghz_state_n23 [5] 23 2 52.2% 70 22 69 8 130.22
swap_test_n25 [5] 25 3 67.6% 482 174 311 31 126.14
cat_state_n22 [5] 22 2 53.2% 66 21 65 8 124.54
rd53_139 [25] 8 5 60.9% 251 140 146 146 68.56
AVG PST(%) 51.8%

Table 1: PST results for large benchmark circuits on a 5-qubit ibmq-lima machine (our
worst-case scenario).

Our serialized execution results are reported using 1000 iterations, each containing
1 shot, as discussed in Section 4.5. For our baseline results, on the other hand, all the
results are reported using 1000 shots per workload. The mapping policy is set to the
default mapping that qiskit/qiskit.transpile employs. We report and compare the results

14 M. Sadeghi et al.

by using gate count and PST. Note that gate count is an important metric since it usually
tracks the effects of the total gate error. PST is calculated using the formula presented
in [18] which as an average PST of expected outcomes.

Table 1 shows our results on a 5-qubit system for benchmarks as large as 27 qubits.
While these (original) circuits clearly cannot run on 5 qubits in a parallel (normal)
fashion, we are able to execute them and obtain reliable outputs by using the proposed
strategy. Our results indicate that, on average, we are shrinking the size of the circuits
tested by 8.87x while achieving an average PST of 51.7%.

Our results are reported on a 5-qubit system, which is the minimum qubit size
for the commercially available quantum systems. We use this system to show that i)
while prior works cannot execute these algorithms on small hardware, our approach
can execute them and achieve results with high reliability, and ii) there exist some
large quantum circuits that benefit from our proposal when targeting even the smallest
quantum hardware available. We predict that, by increasing the qubit size and/or using
a newer generation of quantum hardware, our proposal can achieve a better PST for a
larger set of workloads.

For the Bernstein-Vazirani circuit [3], we report two results with 14 and 19 qubits
(the same circuit with two different number of qubits). As shown in Table 1, the PST
decreases from 51.2% to 42.2% for 14 qubits to 19 qubits on ibmq_lima, due to increase
in coherence error and gate errors predicting a limit on size/depth for reliability. We
report ’depth’ using two different methods. The first method (d1), the conventional
method used in prior research [4, 11], defines depth as the maximum number of steps
between the first operation and the final measurement across all the qubits (DAG layer
count). While this method captures the coherence error in ’parallel execution’, it does
not capture well the coherence error in ’serial execution’ since in the latter the qubits
are reset in the middle of the circuit. Therefore, in this work, we define a secondary
method, d2, which is the maximum number of steps between a reset and a subsequent
measurement across all the qubits. Note that both these methods report the same value
for parallel execution, while they differ for serial execution. Our results indicate that, in
the majority of cases, we are even reducing the d1 due to SWAP reduction when using
our technique. By the second definition, a cat_state_n_23, a similar expansion of the
circuit shown in Figure 3 on a fully-connected architecture, will have a depth of 23,
whereas its serial execution will have a depth (d2) of 5.

PST report on ibmq-Kolkata
Circuit
Name

PE PST SE PST PE
Gate #

SE
Gate #

PE CX# SE CX# PE d1 =
d2

SE d1 SE d2 PE exec.
time (ms)

SE exec.
time (ms)

bv_n14 [5] 26.9% 77.8% 285 121 187 13 68 117 112 45.52 13.66
bv_n19 [5] 21.1% 68.8% 559 166 426 18 126 162 157 73.95 18.88
wstate_n27 [5] 13.7% 56.1% 1016 593 571 124 311 182 17 127.78 68.71
ghz_state_n23 [5] 20.5% 69.8% 307 70 280 22 187 69 8 77.34 22.54
swap_test_n25 [5] 43.9% 53.8% 768 482 484 174 338 311 31 140.40 76.54
cat_state_n22 [5] 31.3% 73% 185 66 159 21 174 65 8 73.33 21.53
rd53_139 [25] 64.5% 67.6% 245 222 137 111 163 156 156 54.53 56.01
Average 31.7% 66.7% 480.7 245.7 301 69 195.29 151.71 69.86 84.66 39.70
PST Gain(%) 210.4% (2̃.1 X)
Gate reduction(%) 48.9% (0̃.5 X)

Table 2: Comparison of sequential execution and baseline execution on an ibmq_kolkata
(27-qubit system) simulator. PE, SE and exec. time stand for parallel execution, serial
execution and execution time, respectively.

6. CONCLUDING REMARKS 15

5.2 Sensitivity Analysis on Larger Systems
In this part, we compare the results of our serialized execution to baseline (parallel)
results on a newer generation quantum system. Table 2 shows the PST and gate count
results with the ibmq_kolkata system. We believe that, sequential execution, when appli-
cable, is superior to parallel execution for three major reasons: i) low average number of
links on current systems cause excessive SWAP operations in parallel execution (increase
in gate counts). Our technique can significantly reduce the severity of this problem; ii)
the new generation quantum systems are trending towards improving the measurement
gate (readout error), which leads to the minimization of our proposal’s overhead; and iii)
the new generation systems also have better T1/T2. This causes the coherence error to
decrease exponentially, which is the main concern for sequential execution. Therefore,
we argue that the current quantum systems are more suited for sequential execution; in
fact, their low average link count is not a good fit for parallel execution, which is the
state-of-the-art. The fact that serial execution is twice as fast as parallel execution reveals
the substantial delay that extra swaps introduce in a system with few links, subsequently
lowering system reliability due to increase in gate error. Furthermore, in parallel execu-
tion, the prolonged execution time can result in a heightened potential wait time, which in
turn will increase the coherence error. Our experimental results indicate that the proposed
scheme achieves around 2.1x PST improvement while reducing the number of gates by
48.9%, compared to running the original circuit on the same system. This is because, by
serializing the execution, we are reducing the number of SWAP operations/gates needed
to migrate the qubits over the links. Compared to the results reported in Table 1, we
observe a significant PST improvement with the ibmq_kolkata system. The reason is that
the newer generation IBMQ systems have better system characteristics such as readout
latency and T1/T2. Additionally, since the newer generation of quantum hardware has
lower readout latency, we expect our approach to be more effective in future systems.

6 Concluding Remarks
We present a compiler-based strategy for sequentially executing quantum circuits and
downsizing them to the lowest qubit count for execution on smaller systems utilizing
MM/MR gates. We demonstrate the correctness of our proposed method, provide a
complexity analysis showing that it operates in O(mn2 logn) time, and show its scalabil-
ity. We report the appropriate level of reliability for a large fraction of the benchmark
circuits offered by QASM [19] and propose the notion of ’iteration count’ over the
frequently-used concept of ’number of shots’, to avoid coherence errors and deliver
reliable results on a small worst-case system for large benchmark circuits. Finally, we
show that, on a modern NISQ system with 27 qubits, our proposed sequential execution
can boost reliability by a factor of two (2.1x PST improvement on average) and reduce
gate counts and circuit exection time by almost half by minimizing the SWAP counts.

Acknowledgments
We acknowledge the use of IBM Quantum services. The views expressed are those of
the authors, and do not reflect the official policy or position of IBM or the IBM Quantum
team. The content described in this manuscript is derived from research that has received
financial support from the National Science Foundation via Grant Numbers 2119236,
2122155, 2028929, 1931531, and 1763681.

16 M. Sadeghi et al.

References

1. ANIS, M.S., et al.: Qiskit: An open-source framework for quantum computing (2021). https:
//doi.org/10.5281/zenodo.2573505

2. Ash-Saki, A., Alam, M., Ghosh, S.: Experimental characterization, modeling, and analysis of
crosstalk in a quantum computer. IEEE Transactions on Quantum Engineering 1, 1–6 (2020)

3. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM Journal on computing 26(5),
1411–1473 (1997)

4. Bhattacharjee, D., Saki, A.A., Alam, M., Chattopadhyay, A., Ghosh, S.: Muqut: Multi-
constraint quantum circuit mapping on nisq computers. In: 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). pp. 1–7. IEEE (2019)

5. Cross, A., Javadi-Abhari, A., Alexander, T., de Beaudrap, N., Bishop, L.S., Heidel, S., Ryan,
C.A., Sivarajah, P., Smolin, J., Gambetta, J.M., et al.: Openqasm 3: A broader and deeper
quantum assembly language. ACM Transactions on Quantum Computing (2021)

6. Das, P., Tannu, S., Dangwal, S., Qureshi, M.: Adapt: Mitigating idling errors in qubits via
adaptive dynamical decoupling. Association for Computing Machinery, New York, NY, USA
(2021). https://doi.org/10.1145/3466752.3480059, https://doi.org/10.1145/
3466752.3480059

7. DeCross, M., Chertkov, E., Kohagen, M., Foss-Feig, M.: Qubit-reuse compilation with mid-
circuit measurement and reset (2022). https://doi.org/10.48550/ARXIV.2210.08039,
https://arxiv.org/abs/2210.08039

8. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv
preprint arXiv:1411.4028 (2014)

9. Fowler, A.G.: Constructing arbitrary steane code single logical qubit fault-tolerant gates.
Quantum Information & Computation 11(9-10), 867–873 (2011)

10. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: Towards practical
large-scale quantum computation. Physical Review A 86(3), 032324 (2012)

11. Gyongyosi, L., Imre, S.: Circuit depth reduction for gate-model quantum computers. Scientific
Reports 10(1), 1–17 (2020)

12. Hua, F., Jin, Y., Chen, Y., Lapeyre, J., Javadi-Abhari, A., Zhang, E.Z.: Exploiting qubit reuse
through mid-circuit measurement and reset. arXiv preprint arXiv:2211.01925 (2022)

13. Hua, F., Jin, Y., Chen, Y., Vittal, S., Krsulich, K., Bishop, L.S., Lapeyre, J., Javadi-Abhari,
A., Zhang, E.Z.: Caqr: A compiler-assisted approach for qubit reuse through dynamic circuit.
In: Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3. pp. 59–71 (2023)

14. IBM: IBMQ System Report guadalupe description. https://quantum-computing.ibm.
com/ (2020), accessed on January 2022

15. IBM: Fake provider. https://qiskit.org/documentation/apidoc/providers_
fake_provider.html (2021)

16. IBM: How to measure and reset a qubit in the middle of a circuit execution. https://docs.
quantum-computing.ibm.com/build/midcircuit_measurement (2021)

17. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta,
J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum
magnets. Nature 549(7671), 242–246 (2017)

18. Khadirsharbiyani, S., Sadeghi, M., Eghbali Zarch, M., Kotra, J., Kandemir, M.: Trim: crosstalk-
aware qubit mapping for multiprogrammed quantum systems. In: 2023 IEEE International
Conference on Quantum Software (QSW). IEEE (2023)

19. Li, A., Stein, S., Krishnamoorthy, S., Ang, J.: Qasmbench: A low-level qasm benchmark suite
for nisq evaluation and simulation. arXiv preprint arXiv:2005.13018 (2020)

https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1145/3466752.3480059
https://doi.org/10.1145/3466752.3480059
https://doi.org/10.1145/3466752.3480059
https://doi.org/10.1145/3466752.3480059
https://doi.org/10.48550/ARXIV.2210.08039
https://doi.org/10.48550/ARXIV.2210.08039
https://arxiv.org/abs/2210.08039
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
https://qiskit.org/documentation/apidoc/providers_fake_provider.html
https://qiskit.org/documentation/apidoc/providers_fake_provider.html
https://docs.quantum-computing.ibm.com/build/midcircuit_measurement
https://docs.quantum-computing.ibm.com/build/midcircuit_measurement

6. CONCLUDING REMARKS 17

20. Li, A., Stein, S., Krishnamoorthy, S., Ang, J.: Qasmgit. https://github.com/pnnl/
QASMBench (2023)

21. Li, G., Ding, Y., Xie, Y.: Tackling the qubit mapping problem for nisq-era quantum devices.
In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. pp. 1001–1014 (2019)

22. Li, G., Wu, A., Shi, Y., Javadi-Abhari, A., Ding, Y., Xie, Y.: Paulihedral: a generalized block-
wise compiler optimization framework for quantum simulation kernels. In: Proceedings of the
27th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems. pp. 554–569 (2022)

23. Litteken, A., Fan, Y.C., Singh, D., Martonosi, M., Chong, F.T.: An updated llvm-based
quantum research compiler with further openqasm support. Quantum Science and Technology
5(3), 034013 (2020)

24. Liu, L., Dou, X.: Qucloud: A new qubit mapping mechanism for multi-programming quan-
tum computing in cloud environment. In: 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). pp. 167–178. IEEE (2021)

25. Maslov, D., Dueck, G.W., Scott, N.: Reversible Logic Synthesis Benchmarks Page (2005),
http://webhome.cs.uvic.ca/ dmaslov

26. Murali, P., McKay, D.C., Martonosi, M., Javadi-Abhari, A.: Software mitigation of crosstalk
on noisy intermediate-scale quantum computers. In: Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems. pp. 1001–1016 (2020)

27. Nguyen, T., Mccaskey, A.: Retargetable optimizing compilers for quantum accelerators via a
multi-level intermediate representation. IEEE Micro (2022)

28. Ohkura, Y.: Crosstalk-aware nisq multi-programming (2021)
29. Ravi, G.S., Smith, K.N., Murali, P., Chong, F.T.: Adaptive job and resource management for

the growing quantum cloud. In: 2021 IEEE International Conference on Quantum Computing
and Engineering (QCE). pp. 301–312. IEEE (2021)

30. Ryoo, J., Kandemir, M.T., Karakoy, M.: Memory space recycling. Proceedings of the ACM
on Measurement and Analysis of Computing Systems 6(1), 1–24 (2022)

31. Shi, Y., Gokhale, P., Murali, P., Baker, J.M., Duckering, C., Ding, Y., Brown, N.C., Chamber-
land, C., Javadi-Abhari, A., Cross, A.W., et al.: Resource-efficient quantum computing by
breaking abstractions. Proceedings of the IEEE 108(8), 1353–1370 (2020)

32. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM review 41(2), 303–332 (1999)

33. Tannu, S.S., Qureshi, M.K.: Not all qubits are created equal: a case for variability-aware
policies for nisq-era quantum computers. In: Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems.
pp. 987–999 (2019)

34. Yang, Y., Xiang, P., Kong, J., Zhou, H.: A gpgpu compiler for memory optimization and
parallelism management. ACM Sigplan Notices 45(6), 86–97 (2010)

35. Yu, T., Eberly, J.: Qubit disentanglement and decoherence via dephasing. Physical Review B
68(16), 165322 (2003)

36. Zhang, C., Chen, Y., Jin, Y., Ahn, W., Zhang, Y., Zhang, E.Z.: A depth-aware swap insertion
scheme for the qubit mapping problem. arXiv preprint arXiv:2002.07289 (2020)

https://github.com/pnnl/QASMBench
https://github.com/pnnl/QASMBench

	Quantum Circuit Resizing via Serial Execution

