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Abstract. This paper presents an optimized code generation for arbi-
trary out-of-place tensor transpositions using the MLIR compiler infras-
tructure, portable across CPU architectures. The proposed modular and
reusable approach encodes optimizations such as multi-level tiling and
explicit vectorization at multiple levels of abstraction as a sequence of
transformation and conversion passes in MLIR. The efficient code gen-
erated is evaluated on AMD, Intel, and ARM processors and achieves
performance comparable to the state-of-the-art HPTT library [27], a
compelling speedup over Eigen [10], and a significant fraction of the
STREAM memory bandwidth on these platforms. We further integrate
this progressive lowering pipeline into COMET, an MLIR-based compiler
for tensor contractions, and obtain an average speedup of 26%.

Keywords: Multi-Level Intermediate Representation · Tensor Transpo-
sition · SIMD architectures.

1 Introduction

Tensor transposition is a generalization of matrix transposition for higher dimen-
sions. It is an important data layout transformation primitive for tensor algebra
operations in various application domains, including machine learning, compu-
tational chemistry, quantum many-body methods, and climate simulations. The
tensor transpose operation involves the permutation of indices of a given tensor:
BΠ(i0,i1,i2,...,in−1) ← Ai0,i1,i2,...,in−1

, where A and B are input and output tensors
respectively, and Π denotes index permutation for the transposition.

Prior work on improving the performance of arbitrary tensor transpositions
include highly optimized libraries, notably HPTT (High-Performance Tensor
Transpose) [27], and others [30, 16, 18, 10, 21], and source-to-source code gener-
ators with autotuning [26, 31]. While they achieve high performance, it is quite
challenging to integrate them into general-purpose and domain-specific compil-
ers. It also requires significant engineering effort and expertise to repeatedly port
these libraries to similar and future architectures.

Multi-Level Intermediate Representation (MLIR) [19] is a recent compiler
framework that facilitates building reusable and extensible compiler infrastruc-
tures. MLIR breaks the isolation between domains and enables comprehen-
sive optimizations by expressing the computation at different levels of abstrac-
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tions called dialects. MLIR can be organically used to represent architecture-
independent transformations (e.g., tiling) at the higher-level dialects, and platform-
specific optimizations (e.g., vectorization) at the lower-level dialects. During
compilation, the source program’s high-level representation is progressively op-
timized and transformed to lower-level abstractions, until reaching a low-level,
general-purpose representation for code generation. Several domain-specific com-
pilers [2, 5, 28, 3, 7, 4, 1, 9, 17, 15, 23, 6] are under development leveraging the MLIR
framework, and many of them [5, 28, 2, 23, 6, 7] involve data layout transforma-
tions with tensor transposition at different levels.

Though tensor transpositions have zero arithmetic intensity and exhibit no
temporal locality, they pose challenges to modern memory subsystems due to
their irregular memory accesses and potentially large strides. Figure 1 shows
the MLIR code lowered from copy() operation in linalg dialect to the affine
dialect for an out-of-place 5D tensor transpose (Bi4,i3,i2,i1,i0 ← Ai0,i1,i2,i3,i4).
The naive lowering results in a 5D affine loop nest that reads from the input
memref and copies it to output memref for the corresponding index permutation.
This native code exhibits poor spatial locality due to the high-access stride of
the output memref. To achieve high performance for tensor transpositions, it is
essential to effectively exploit the deep cache hierarchies, ample parallelism, and
vectorization capabilities of modern CPUs.

Fig. 1: 5D tensor transpose code lowered from linalg to affine dialect in MLIR

This necessitates a systematic, modular, and reusable approach for gener-
ating tensor transpose kernels by exploring design points and optimizing them
efficiently. In this paper, we propose an optimized code generation for arbitrary
tensor transpositions by implementing various optimizations at multiple abstrac-
tion levels in MLIR. The primary contributions of this work are as follows:

– We develop a progressive transformation and lowering pipeline in MLIR that
generates high-performance parallel code for tensor transpositions portable
across different CPU architectures (section 2).

– We perform an evaluation of generated code on four different platforms based
on AVX, AVX-512, and ARM SVE instruction sets. We assess performance
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portability on these architectures using the efficiency metric proposed in [24]
(section 3).

– We integrate this code generation pipeline for optimized transpositions into
the MLIR-based COMET [23] compiler and demonstrate speedup for tensor
contractions (section 4).

2 Design and Implementation

The code generation pursued in this work with MLIR generates kernels for par-
allel out-of-place tensor transpositions of arbitrary order (dimensionality) and
single and double floating-point precisions. It is portable across SIMD architec-
tures with support for AVX2, AVX-512, and ARM SVE, and extensible to other
vector instruction sets. Optimizations such as multi-level tiling, loop reordering,
multithreading, and explicit vectorization are progressively applied at multiple
levels of the IR.

We adapt the key design principles from HPTT [27], the state-of-the-art C++
library for tensor transpositions on CPUs that supports up to AVX2 instructions.
Arbitrary tensor transpositions are decomposed into independent 2D transposes,
and each 2D slice is further decomposed into two levels of tiles: macrotiles and
microtiles. Macrotiles are parallelized over different threads and each microtile is
computed by an explicitly vectorized microkernel. Figure 2 shows the reduction
of a 3D tensor transposition into a series of independent 2D microtiles.

Fig. 2: Reducing a 3D tensor transposition to a series of 2D microtiles.

2.1 Overview of Code Generation in MLIR

We implement a progressive lowering pipeline that encodes optimizations at
multiple dialects in MLIR, which is shown in figure 3.

Entry Point for Code Generation We begin the code generation at the
linalg dialect using the copy operation as an abstraction for tensor transposi-
tions. The linalg.copy() operation copies data from an input view to an out-
put view and reorders the indices of the output view for a given permutation
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attribute. Figure 1 shows an example of linalg.copy. The entry point for code
generation can also be an IR, for example, generated from a frontend like Ten-
sorFlow lowered to MHLO and then to the linalg dialect.

Fig. 3: The progressive lowering pipeline for the linalg.copy operation to gener-
ate the corresponding LLVM IR. Dashed lines indicate lowering passes for future
extension.

Transformations and Lowering in MLIR The initial step is to reorder
the loops for the linalg.copy operation at an optimal order (section 2.2). Two-
dimensional slices are then extracted from the input tensor using the extract slice

operation. We implement a custom transformation pass to perform two-level
tiling that decomposes each of the extracted 2D slice into macrotiles and mi-
crotiles (section 2.3). The next step is lowering to the scf dialect where the
loops corresponding to macrotiles are parallelized (section 2.4). We then lower
to the vector dialect and further down to dialects specific to the instruction set
– x86vector (for AVX and AVX-512) and arm sve. At this stage, the microtiles
are computed by architecture-specific, hand-optimized microkernels that are ex-
plicitly vectorized and perform an in-register two-way transposition (section 2.5).
The final step is to lower to the llvm dialect and generate the LLVM IR corre-
sponding to the lowered vector code. For a given entry point (e.g., linalg.copy),
the end-to-end code generation process is automated.
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Portability The ability to progressively apply optimizations in multiple dialects
of MLIR simplifies the generation of code portable to different platforms. The
lowering pipeline in figure 3 is architecture-independent until the vector dialect
and the subsequent lowering to platform-specific dialects generates vectorized
code corresponding to the vector instruction set. This makes code generation
extensible to different CPU architectures, with the microkernel alone needing to
be implemented, and the existing pipeline can be reused. We currently support
code generation for x86 and ARM SVE-based CPUs, and this approach can be
simply extended to ARM Neoverse, IBM Power, and other instruction sets by
implementing the corresponding microkernel.

2.2 Loop reordering

An n-dimensional tensor transpose has n! distinct orderings of loops. The choice
of best loop order for an n-way transpose has a significant impact on its perfor-
mance, as observed in [13]. The optimal loop order is one that maximizes the
data locality of both input and output tensors, resulting in reduced cache and
TLB misses. This also minimizes the access stride within the innermost loop,
which helps the hardware prefetchers better learn the memory access patterns.
Hence, placing the loops corresponding to the fastest varying (stride-1) indices of
both input and output tensors among the innermost levels of the loop yields high
performance. For example, the best loop order for the transposition in figure 1
Bi4,i3,i2,i1,i0 ← Ai0,i1,i2,i3,i4 is [i2, i1, i3, i0, i4], where i2 and i4 are the outermost
and innermost loops respectively.

We determine the optimal loop order for an arbitrary transposition using a
heuristic-based cost model. The model assigns a cost to each loop index based
on its position with respect to both input and output tensors, with the cost
exponentially increasing from the innermost to the outermost loop. The overall
cost of the loop order is computed by summing up the cost of each loop index.
The overall cost is the least when the innermost indices of both input and output
tensors are the innermost loops. The optimal loop order obtained from this model
is set using the mlir::interchangeLoops transformation utility.

It needs to be noted that this model does not account for the extent of
tensor modes to determine the best loop order. For certain higher dimensional
tensor transpositions, it may be more performant to place the modes with shorter
extents at the innermost loop, instead of fastest varying modes. Determining this
requires a more sophisticated analytical model, which is out of the scope of this
paper.

2.3 Multi-Level Tiling

To further increase spatial locality in both input and output tensors and facili-
tate vectorization, it is essential to restructure memory accesses by performing
two-level tiling. Two-dimensional slices extracted from the input tensor are de-
composed into independent macrotiles and microtiles. These tiles preserve the
stride-1 access of the input and output tensors, since the loop order is set to
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have the innermost indices of both tensors at the innermost loop levels. The
macrotiles are executed in parallel with multithreading (section 2.4), and the
microtiles are computed by a fully vectorized microkernel (section 2.5).

The size of the microtile µ is set as the SIMD width of the underlying architec-
ture (e.g., µ = 8 for double precision tensors on AVX-512-based architectures).
The macrotile size ρ is fixed to 4 times that of microtile (ρ = 4.µ). This en-
ables data to be moved at the granularity of cachelines and also helps hardware
prefetchers fetch adjacent cachelines. This also reduces false sharing of cachelines
among threads when macrotiles are executed in parallel.

For irregularly shaped input tensors when its stride-1 extent is not divisible
by macrotile size ρ, the size of partial macrotiles is altered accordingly to ρ = 2.µ
or ρ = µ for utilizing vectorized microtiles. In cases when the partial tiles are
smaller than µ, the remainder is computed by a non-vectorized generic transpose
kernel.

We implement a custom transformation pass in the linalg dialect to tile
the copy kernel in two levels to generate macrotiles and microtiles, and also to
handle partial tiles.

2.4 Parallelization

After tiling in the linalg dialect, we then lower to the scf dialect. The gen-
erated macrotiles are entirely independent of each other and can be executed
in parallel by different threads. The scf.for loops corresponding to macrotiles
to be parallelized are marked and converted to scf.parallel. Parallelization
of the innermost loops (fastest varying indices) is avoided to eliminate highly
strided memory accesses and false sharing among threads.

2.5 Explicit Vectorization

The scf dialect is now lowered to the vector dialect using the vector.transpose
abstraction. Each microtile is computed by an explicitly vectorized microkernel
after lowering to ISA-specific dialects – x86vector and arm sve. Each micro-
kernel for single and double-precision elements is manually implemented using
vector intrinsics in AVX2, AVX-512, and ARM SVE (in this work, the vector
width for SVE is fixed to 512). We added new MLIR operations for vector in-
strinsics that did not exist in x86vector and arm sve dialects to implement the
microkernels.

The microkernel performs an in-register transposition of each µ×µ microtile
in log2µ number of steps. Figure 4 shows an exemplary microkernel for a 4 × 4
microtile implemented with AVX instructions that get completed in log24 = 2
steps. Initially, the 16 microtile elements are loaded from memory into registers
using vectorized loads. Then, in two steps, in-register transposition is performed
by unpacking and interleaving the lower and higher halves of registers. Finally,
the transposed microtile is stored back in memory.

As another example, a 16 × 16 microtile with single-precision elements can
transposed in log216 = 4 steps using AVX-512 instructions in a total of 64 cycles.
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Fig. 4: Pseudocode for an exemplar microkernel with AVX vector intrinsics for
a 4× 4 double-precision microtile.

In each step, the shuffling and interleaving width of logical elements is expanded.
We also increment the distance at which we access the 32 registers grouped into
two sets of 16 registers each. As in the previous example, the first two steps
respectively involve 32-bit and 64-bit interleaves of register elements, resulting
in a pair of output registers holding intermediate transpose elements at 128-bit
granularity. The third step is shuffling register pairs at 128-bit granularity, which
outputs registers holding 256-bit of transposed data. The fourth and final step
is to shuffle these 256-bit registers again, resulting in a final set of 16 registers
holding the 16× 16 transposed microtile.

We adopt this blueprint for implementing microkernels instead of HPTT’s
since the HPTT microkernel involves the use of local buffers and causes addi-
tional data movement. Our implementation enables us to extend the microkernel
to architectures with wider SIMD lengths, and perform in-register transpositions
efficiently, as presented in the above examples.

For the case of remainder partial tiles (discussed earlier in section 2.3), we cur-
rently use a generic non-vectorized transpose kernel. Instead, partial tiles could
also be fully vectorized by employing masked loads and stores in the microker-
nel, and further improve the performance. Moreover, we could also automatically
generate the microkernel while lowering to ISA-specific dialects for a more sim-
plified end-to-end code generation. Both of these extensions are the subject of
future work.

3 Performance Evaluation

In this section, we compare the performance of tensor transpose kernels gen-
erated with our approach against state-of-the-art libraries on four different ar-
chitectures. We also use an efficiency metric [24] to evaluate the performance
portability of our code generation.
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3.1 Experimental Setup

Hardware Description We evaluate the achieved performance on four sys-
tems: (i) LBNL Cori’s Intel Haswell (results were collected before its decommis-
sioning in May 2023), (ii) ORNL’s Frontier AMD CPU, (iii) Intel Ice Lake from
University of Utah’s Notchpeak cluster, and (iv) Stony Brook’s Ookami with
Fujitsu A64FX processor, which is a prototype of the Fugaku supercomputer.
(i) and (ii) support up to AVX2 vector instructions, (iii) has AVX-512 enabled,
and (iv) is based on ARM SVE (the vector width is set to 512). Table 1 provides
details of the four platforms evaluated.

Table 1: Evaluated hardware platforms

System Processor
Micro-

architecture

Instruction
Set

Extensions
#Threads

STREAM
Bandwidth
(GB/s)

Cori Intel Xeon E5-2698 v3 Haswell AVX2 56 65
Frontier AMD EPYC Trento 7A53 Zen 3 AVX2 128 158

Notchpeak Intel Xeon Gold 6330 Ice Lake AVX-512 112 177
Ookami Fujitsu A64FX ARMv8.2-A ARM SVE 48 118

Baselines The optimized code generated with our approach is compared against:

– High-Performance Tensor Transposition (HPTT) C++ library [27] set up
to perform tensor transposes without scaling and accumulating the inputs,
with all optimizations turned on, and autotuning enabled to determine the
best loop permutation and parallelization strategy.

– Eigen [10] C++ template library (v3.4.0).
– STREAM triad benchmark [22], to estimate the execution efficiency of the

generated code in terms of achieved memory bandwidth.

Dataset We use a set of 57 single and double-precision tensor transpositions
from the TTC benchmark [26] ranging from 2D to 6D, with each tensor occu-
pying about 200 MB of memory, which is larger than the last level cache of the
systems evaluated. The dataset comprises test cases of inverse transposes, and
cases where the stride-1 retains its position after transposition. It also includes
transposes where the extent of all tensor modes are kept the same, and cases
where the largest mode is substantially bigger than the smallest mode of the ten-
sor. This variety of test cases provides broad diversity for performance analysis,
and we thus choose this dataset for evaluation.

The achieved memory bandwidth is calculated as 2×S×D
109×time , given the size S

of the tensor (product of its dimension sizes), and time taken in seconds for its
transposition. The value of D is 4 and 8 for single and double-precision tensors,
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respectively. Each test case is run ten times and the average is reported with
caches cleared after each run.

3.2 Performance Relative to HPTT on AVX-Based CPUs

Figure 5 compares the performance of our transpose code generated against
HPTT and Eigen on Cori’s Haswell and Frontier’s AMD CPUs for double-
precision tensors. Over Eigen, we achieve a maximum speedup of 2.7x and an
average speedup of 1.9x on Cori and a maximum speedup of 3.1x and an average
speedup of 2.3x on Frontier. On average, we obtain a significant fraction of 80%
and 78% of the STREAM memory bandwidth on Cori and Frontier, respectively.
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Fig. 5: Performance comparison with HPTT and Eigen libraries on AVX2-
enabled Cori and Frontier systems.

We achieve performance comparable to HPTT despite the additional op-
timizations performed by it that include software prefetching and employing
non-temporal (streaming) stores, along with autotuning. We attain an average
of 92% and 88% of HPTT’s performance, respectively, on Cori and Frontier.
For 2D transpositions, our approach slightly outperforms HPTT. For certain
higher dimensional transpositions where the stride-1 is identical in both ten-
sors and when the extent of tensor modes is similar, we perform on par with
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HPTT, implying that the additional optimizations by HPTT are not very ben-
eficial. In some cases, HPTT parallelizes the stride-1 indices as well to perform
load balancing, which leads to non-consecutive memory accesses in threads. In
a few other cases, the non-temporal stores set by HPTT get overridden by the
temporal stores issued by the compiler.

For some 6D transpositions with a large difference between the extent of
tensor modes, autotuned HPTT performs much better than our code. This is so
because the model used by us for loop reordering does not factor in the extent
of the tensor modes. So, for those cases, it could be optimal to place the indices
with smaller extents at the innermost loop levels instead of the stride-1 indices.
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Fig. 6: Performance comparison with Eigen library on Intel Ice Lake (AVX-512)
and Fujitsu A64FX (ARM SVE).

3.3 Performance on AVX-512 and ARM SVE Systems

Figure 6 shows the memory bandwidth obtained on Intel Ice Lake and Ookami’s
Fujitsu A64FX processors for double-precision tensors. Since HPTT supports
only up to AVX2 intrinsics, we are unable to evaluate its performance on these
systems. We thus compare the achieved performance against the Eigen and
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STREAM benchmarks. Our code attains a maximum and average speedup of 2.1
and 2.9, respectively, over Eigen and an average of 75% of STREAM bandwidth
on Intel Ice Lake. However, on Ookami, both Eigen and our code do not per-
form as well as they did on other platforms. Our generated code obtains 72% of
STREAM bandwidth, and a remarkable average speedup of 3.1 and a maximum
speedup of 3.8 over Eigen.

3.4 Performance Portability Metric

To assess the portability of the pursued code generation approach, we adopt the
metric PP defined by Pennycook et. al. in [24]. The metric PP is calculated as the
harmonic mean of the application’s performance efficiency across platforms, as
shown in the equation below:

PP(a, p,H) =

{ |H|
Σi∈H

1
ei(a,p)

, if i is supported, ∀i ∈ H

0, otherwise

where ei(a, p) is the metric’s performance efficiency for application a and prob-
lem p on platform i. Consistently high efficiencies produce high performance
portability PP.

For this work, we define the performance efficiency ei as a fraction of the
system’s STREAM triad memory bandwidth. Table 2 shows the efficiency of the
generated code for single and double-precision tensor transpositions on the four
platforms. The overall performance efficiency PP is 74%, which is a significant
fraction of the STREAM memory bandwidth, indicating the portable perfor-
mance achieved by the code generated for FP32 and FP64 transposes on the
four platforms.

Table 2: Application efficiency ei of double and single-precision tensor transpo-
sitions across four platforms as a fraction of STREAM bandwidth.

Precision Cori Frontier Ice Lake Ookami Efficiency

FP64 80% 78% 75% 72% 76%
FP32 79% 76% 71% 69% 73%

Overall PP 74%

4 Case Study: Compiler Integration

In this section, we illustrate the application of transpositions in tensor con-
tractions, describe the integration of our transpose code generation into the
MLIR-based COMET compiler, and analyze the performance of resulting tensor
contractions.
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4.1 Background: Tensor Contractions

Tensor contraction is a high-dimension generalization of matrix multiplication
that is at the core of various science and engineering applications. For example,
C[a, b, c, d] =

∑
e,f A[e, a, f, c] × B[b, f, d, e] is a tensor contraction from the

coupled-cluster method in quantum chemistry where two 4D tensors A and B
are contracted over indices e and f to output a 4D tensor C. The direct approach
to perform tensor contractions is to implement a nested loop. Optimizations
on these loop nests, such as tiling, loop fusion, and vectorization, often yield
suboptimal performance due to highly strided memory access patterns that result
in poor cache locality.

Transpose-Transpose-GEMM-Transpose (TTGT) The indirect TTGT
approach performs index permutations of input tensors using explicit tensor
transpositions followed by a GEMM operation, and a final permutation of the
resulting matrix to reconstruct the output tensor. The transposition of input
tensors flattens (or unfolds) them into matrices by reordering their indices and
then merging consecutive indices. The TTGT approach is widely adopted due to
its conceptual simplicity and generality, and the availability of highly-optimized
vendor-provided GEMM routines. However, an efficient implementation of tensor
transpositions is essential to obtain high performance for tensor contractions.

4.2 Integration with COMET Compiler

COMET [23] is a domain-specific compiler for tensor algebra developed using
the MLIR framework. It supports code generation for dense and sparse tensor
contractions targeted at CPUs, GPUs, FPGAs, and other accelerators. This
paper focuses on optimizing dense tensor contractions on CPUs with COMET.

The COMET compiler generates code for dense tensor contractions based on
the TTGT approach. COMET implements a progressive lowering pipeline and
applies optimizations in multiple dialects of MLIR. Domain-specific optimiza-
tions such as reordering multi-operand expressions and optimal index permuta-
tion for TTGT are performed at the higher-level Tensor Algebra (TA) dialect.
The TA dialect is lowered to the linalg dialect where tensor contractions get re-
formulated as a series of linalg.copy (transpose) and linalg.matmul (GEMM)
operations. Transpose and GEMM operations are optimized and then lowered
to lower-level dialects.

The linalg.matmul operation is optimized using the opt-matmul-tiling

pass that applies the tiling strategy from the BLIS framework [29]. With the
opt-matmul-mkernel pass, it can also optionally replace the innermost GEMM
computation after tiling with the BLIS microkernel. These optimizations yield
high performance for the GEMM operation.

For the linalg.copy operation, COMET implements the opt-dense-transpose
pass to apply naive tiling and loop permutation optimizations. These optimiza-
tions for the transpose kernel are not adequate, and its inefficiency causes signifi-
cant overhead on tensor contractions, especially in cases when they are memory-
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bound. We thus replace the opt-dense-transpose pass in COMET with our
progressive lowering pipeline presented in this paper (figure 3). On integrating
our approach with COMET, we generate efficient tensor transpose kernels for
TGGT-based tensor contractions by applying sophisticated optimizations such
as multi-level tiling, loop reordering, and explicit vectorization.

4.3 Performance of Tensor Contractions

We analyze the performance of the resulting tensor contractions generated with
our approach for optimized transpose code generation integrated into COMET.
This is compared to the code generated using COMET’s opt-dense-transpose
default pass. For both cases, the opt-matmul-mkernel pass is enabled to use the
BLIS microkernel for high-performance GEMM kernels. We use a set of 20 tensor
contractions from the TCCG benchmark suite [25] for evaluation. Experiments
are run on Frontier’s AMD CPUs (table 1).
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Fig. 7: COMET’s performance using our transpose code normalized with
COMET’s performance using existing transpose code generated.

Figure 7 shows the performance of tensor contractions with transpose kernels
generated using our approach, normalized with the performance of tensor con-
tractions generated with COMET’s opt-dense-transpose pass. Our approach
achieves a maximum speedup of 54% and an average speedup of 26% for the
20 tensor contractions. We obtain a speedup of at least 40% for tensor con-
tractions highly limited by memory bandwidth, i.e., the contractions that are
exceedingly bound by the performance of the transpose operation, instead of
GEMM. Altogether, we observe performance gains for all 20 tensor contractions
with COMET, utilizing the optimized tensor transposition kernels generated
with our approach.
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4.4 Integration With Other Compilers

We demonstrated the performance improvements for tensor contractions by in-
tegrating our proposed transpose code generation into COMET. Other MLIR-
based domain-specific compilers for deep learning, notably IREE [2] and PlaidML [5],
and others [28, 6, 7] could also benefit from optimized tensor transpose kernels.
Deep learning workloads involve data layout transformation at various stages of
computation. An appropriate example is convolutions, where data layouts are
often transformed from, say NCHWD, to other suitable layouts. While there
have been efforts to reduce data layout transformations in convolutional neural
networks [20, 11, 14], they still remain a bottleneck in various cases.

TensorFlow [8] leverages the Eigen library to perform tensor algebra opera-
tions. Given that our transpose code generated achieves significant speedups over
Eigen (section 3), the XLA compiler can leverage our code generation for high-
performance transpositions, using the MLIR backend. The PlaidML compiler
built with MLIR can benefit from efficient transpose kernels when transforming
computations based on the Batch-Reduce GEMM (BRGEMM) approach [12].
Other use cases for applying efficient transpositions include neighbor aggregation
in graph neural networks and attentions in transformers.

5 Conclusion

We present an optimized code generation for arbitrary tensor transpositions by
implementing a progressive lowering pipeline in MLIR. We demonstrate per-
formance portability on four different CPU architectures with an efficiency of
74%. We achieve significant speedups over Eigen, and performance on par with
HPTT. Integrating this approach with the COMET compiler yields optimized
performance for tensor contractions. The proposed transpose code generation
can further be integrated with other MLIR-based domain-specific compilers.
Implementing additional optimizations (full vectorization of tiles and analytical
model for loop reordering) and extension to GPUs are subjects of future work.
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