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Abstract. Motivated by the challenges of programming irregular appli-
cations for machines with million-fold parallelism, we present a key-based
programming model, called key-value map-shuffle-reduce (KVMSR), that
enables programmers to optimize fine-grained parallel programs. KVMSR
expresses parallelism on a global address space and features modular in-
terfaces to flexibly bind computation to available compute resources.
We define the KVMSR model and illustrate it with three programs,
convolution filter, PageRank and BFS, to show its ability to separate
computation expression from binding to computation location for high
performance. On a 2,048-way parallel compute system, KVMSR modu-
lar computation location control achieves up to 1,732x performance with
static approaches and an increase of 372x to 1,127x speedup with dy-
namic approaches for computation location binding.

Keywords: graph computing · parallel computing · fine-grained paral-
lelism · scalable computing · high-performance computing · map-reduce

1 Introduction

Massive graph analytics applications of billions of vertices, arising from social
network analysis and supply chain resilience, are increasingly important, and
the state-of-the-art demands on the online responses for queries on such large
graphs. Such applications will require systems with millions of compute elements
and petabytes of memory. Programmers of such machines must generate suffi-
cient parallelism to utilize compute resources, effectively bind the parallelism
to compute elements and manage parallelism efficiently. This is challenging be-
cause real-world graphs give rise to irregular parallelism and poor data locality,
producing load imbalance, costly communications and data movement, and poor
overall performance.
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Main-stream scalable, parallel programming solutions do not support irreg-
ular applications well (eg. real-world graph analytics). For example, message-
passing models (e.g., MPI + domain decomposition) provide scant support for
global data structures and exploiting irregular parallelism. To achieve high per-
formance, programmers must assemble the data required for each piece of parallel
computation and align it to a static set of workers (ranks) [4].

Even partitioned global address space models (PGAS) that provide a global
address space that aids in building the distributed global data structure, fail
to serve these graph analytic applications well [19]. In PGAS programs such
as UPC++, good performance depends on careful decomposition and single
program multiple data (SPMD) orchestration of data movement across multi-
dimensional arrays. Dealing with graphs is possible, but difficult because of their
irregularity in data and parallelism [2, 18].

A promising direction is MapReduce. Traditional functional programming
languages have used map and reduce functions to express fine-grained paral-
lelism, but are limited by the scaling of shared memory machines to ≈ 256,
and thus cannot support these future machines. Cloud map-reduce systems add
keys to organize the computation and are more scalable, but cannot exploit
fine-grained parallelism [15, 20, 6].

We propose the key-value map-shuffle-reduce (KVMSR) framework to sup-
port irregular data and computation parallelism in future large-scale parallel
systems. These systems will use novel building blocks for fine-grained paral-
lelism and scale to 30 million parallel computation elements [21]. To optimize
irregular programs, KVMSR combines rich-structured keys and global address-
ing of data and adds novel simple interfaces for programmers to directly control
the binding of map and reduce tasks to compute resources. Hence, programmers
can exploit the expressiveness of keys to flexibly manage parallelism and then
optimize performance, in a modular fashion by controlling data locality and load
balance.

We describe our KVMSR model, use program examples to illustrate it, and
then show how the model’s flexibility supports high performance for challenging
irregular computations. Specific contributions of this paper include:

– Design of KVMSR for expressing and managing fine-grained parallelism us-
ing keys. KVMSR expresses the binding of computation to compute resources
independently from program computation and data structure.

– Examples of how the keys in KVMSR can be used to efficiently control
computation binding, both statically and dynamically (using application,
system, and data information), to achieve load balance and high performance
on irregular graph applications

– Evaluation that shows on a 2,048-way parallel compute system, KVMSR
modular computation location control achieves up to 1,732x performance
with static approaches and an increase of 372x to 1,127x speedup with dy-
namic approaches for computation location binding.

The remainder of the paper is organized as follows. We define the KVMSR
model in Section 2, followed by two program examples described in Section 3.
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An implementation of the KVMSR model is evaluated in Section 4, to show its
flexibility and performance benefits. We discuss related work in Section 5, and
summarize and point out directions for future work in Section 6.

2 KVMSR Programming Model

Successful parallel programming requires an application to control three dimen-
sions (see Figure 1), coordinating them to achieve good parallel scalability and
performance. Each parallel application must deal with several challenges that
arise from parallel/distributed capabilities as shown in Figure 1, including accu-
rately expressing parallel computation and data structures, efficiently mapping
computation to compute locations (e.g., cores or lanes), and data to memory
locations (e.g., memory stacks or banks). While doing these correctly from a
functional point of view is already challenging for regular HPC applications, do-
ing so and also achieving scalable performance is even harder for applications,
especially the irregular ones.

Fig. 1. Parallel applications manage three dimensions to achieve performance (left).
Computation and data must be mapped to distributed capabilities.

The key-value map-shuffle-reduce (KVMSR) model supports a flexible ex-
pression of parallel computation and data structures, independently from the
choice of computation binding and data distribution.

KVMSR employs keys as the critical abstraction for programmers to express
parallel computation. Parallelism is, therefore, equal to the number of keys in
the input, and as fine-grained as the corresponding map task. The reduce tasks
are similar except that they are based on the intermediate keys generated by
the map tasks. KVMSR’s major innovation is to use the keys as the basis for
programmers to bind computation to parallel computer resources. Most impor-
tantly, such binding is expressed independently from the data layout and pro-
gram computation, resulting in a clean and modular interface. To support irreg-
ular applications, KVMSR provides a global address space so that a data item
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can be named uniformly from anywhere in the machine. KVMSR also exposes
machine primitives that locate computation based on data location and dynamic
computation load. Tersely, the key elements of KVMSR include:

1. Flexible and fine-grained parallelism, expressed as kv map() and kv reduce()

tasks on keys

2. User-defined key spaces (control binding of kv map() and kv reduce() tasks
to computation resources)

3. Global address space (uniform naming and global data layout)

4. Exposing machine primitives (data location and dynamic computation load)

The four features collectively enable high-level programming of applications
with global data structures and independent control of a program’s parallelism
and computation binding. For example, different dimensions of a program can
be successively tuned to achieve high performance on the target system: First
exploring computation binding to exploit parallelism, then colocating for data
locality, and finally, load balancing based on dynamic information.

2.1 Machine Model

A parallel computer fundamentally includes two types of elements – compute and
memory – tied together by an interconnect as illustrated in Figure 2. We assume
the hardware provides a global address space, and the ability to send messages
and move data across the interconnect with low overhead. High performance
is achieved by sufficient parallelism and good load balance to utilize all of the
compute elements efficiently.

Fig. 2. A parallel machine fundamentally has compute and data locations connected
by an interconnect.

One critical capability for irregular applications is to place computations
based on the dynamic evolution of the program. For example, adapting to the
computation load or the location of the data to be operated on. In all cases,
static and dynamic, we assume that compute and memory elements locations
are denoted {0:nr memories}, and there may be finer resolution of compute
locations, denoted lanes {0:nr lanes}.
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2.2 Expressing Computation

KVMSR computes on sets of key-value pairs. The values can include pointers
to other data (or even synchronizing data abstractions) in the global shared
address space. For example, independent map tasks could access a shared hash
table supporting atomic operations, or an MPMC queue. As a result, KVMSR’s
map and reduce functions are extremely capable.

KVMSR’s map phase generates an intermediate key-value set which is then
shuffled to reduce. The reduce phase executes in parallel across the intermediate
keys and produces an output key-value set. The function is illustrated in pseudo-
code in Listing 1.1.

Listing 1.1. Pseudo-code for KVMSR. Execute map functions in parallel, generates
an intermediate key-value set, shuffles, and computes reduce functions in parallel to
produce an output key-value set.

KVSet kv map shu f f l e r educe (KVSet i npu t s e t ) {
KVSet i n t e r s e t , ou tput s e t ;
for (KVPair kv : i npu t s e t )

kv map ( kv . key , kv . va lue s ) ; // genera te i n t e r s e t
s h u f f l e ( i n t e r s e t ) ;
for (KVPair kv : i n t e r s e t )

kv reduce ( kv . key , kv . va lue s ) ; // genera te output
return output s e t ; }

2.3 Map and Reduce Functions

KVMSR programs define the computation tasks to be executed using the kv map()

and kv reduce() functions. The interface is illustrated in Listing 1.2.

Listing 1.2. Function kv map() and kv reduce() interface.

void kv map (Key key , Types va lue s ) {
. . . map code . . .
kv emit ( i n t e r key , i n t e r v a l u e s ) ;
return ; }

void kv reduce (Key in t e r key , Types i n t e r v a l u e s ) {
. . . reduce code . . .
return ; }

As described above in Listing 1.1, the kv map() functions are called in parallel
for each key in the input set, producing an intermediate key-value set. These are
shuffled to bring together values for any single key. The kv reduce() function
is called in parallel on each key-value pair of the intermediate key-value set
to produce the output set. While many uses are possible, kv map() typically
expresses independent parallel computation, and kv reduce() merges values,
handling any needed serialization in the computation.
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2.4 Global Data Structures

KVMSR assumes execution on a scalable parallel MIMD computer that provides
global naming for data structures in memory. With unified names, calls to oper-
ate on arbitrary shared data abstractions can be made within the kv map() or
kv reduce() function. For example, they can include reads and updates for a
shared hash table, where atomic operations are provided by the hash table ab-
straction. Another common use is tree or queueing structures, where the struc-
ture implements both exclusion and ordering to support correctness.

This makes KVMSR much more powerful than cloud MapReduce systems [6,
7] where map and reduce computations cannot share global data. In Section 3.1,
we give an example to demonstrate the benefits of operating on global memory.

Computation Location Naming KVMSR abstracts the physical compute
elements into a list of computation locations, each of which is assigned an ID.
Take a machine consisting of 256 lanes as an example, each lane is assigned an
ID in the range {0:255}, and each computation task (i.e., either a kv map() or
kv reduce()) will be bound to one of the lanes. We will further describe the
binding in the section 2.5.

The naming scheme does not assume specific topology and/or hierarchy, but
programmers can embed machine-specific information into the location name to
reflect the nearness of compute units or the sharing of physical resources. In the
rest of the paper, we use lanes as the basic units of compute, i.e., each lane is a
compute location assigned with an ID of type LaneID.

2.5 Parallelism Management

Applications exploit the available parallel compute resources by binding tasks
to computation locations. Whether one can efficiently do so is critical to the
program’s performance. To help write and optimize parallel programs, KVMSR
provides two customizable functions for programmers to control the binding of
computation to resources, i.e., compute locations.

Customizing Computation Location Binding In KVMSR, each key cor-
responds to a parallel computation task, and the function get map loc() and
get reduce loc() use the key to determine a location on which the task will
execute. The interface is illustrated in Listing 1.3.

Listing 1.3. Function get map loc() and get reduce loc() interface. Bind keys to
compute locations.

LaneID get map loc (Key key ) {
LaneID id = . . . ;
return id ; }

LaneID g e t r e du c e l o c (Key key ) {
LaneID id = . . . ;
return id ; }
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Exploiting Parallel Compute Resource The computation of a compute
location name can be done statically or decided dynamically as below.

– Static Simple hashing or static distribution techniques can be used to spread
unpredictable task sizes and number of task computations across the ma-
chine. The binding can also be determined statically based on the data lo-
cation, given it does not change during the program execution.

– Dynamic Locations can also be dynamically determined based on ma-
chine compute load.Applications can use machine-specific features, such as
get less busy lane(), to dynamically decide the binding.

In the next section, we will show how to utilize the power of customizing
control of computation binding in KVMSR for parallelism management and
computation load balancing.

3 Program Examples

We use two examples to show KVMSR’s programming interface and highlight
its efficiency in expressing irregular parallel programs. We assume a highly par-
alleled machine with thousands of lanes, each of which is assigned an ID.

3.1 Convolution Filter

We start with a simple example, the convolution filter, to illustrate the interface.
The pixel data is stored in a global two-dimensional array. As shown in Listing
1.4, each map function applies a 3x3 convolution filter to the sub-image centered
at pixel < x, y > and outputs the new value for that pixel. The outputs are then
shuffled to the reduce function, which stores new values in the output image.
Here, we use the center pixel’s < x, y > coordinates as the key. Without further
specification, the program places all computations on one lane, i.e., Lane 0.

Listing 1.4. Baseline KVMSR convolution filter program code

typedef struct { int x idx , y idx ; } Key ;
double input image [M] [N ] ;

void kv map (Key key , double [ ] va lue s ) {
double [ 3 ] [ 3 ] conv ke rne l = l o a d f i l t e r ( ) ;
double [ 3 ] [ 3 ] sub img = to matr ix ( va lue s ) ;
double r e s u l t = conv ( sub img , conv kerne l ) ;
kv emit ( key , r e s u l t ) ;
return ; }

void kv reduce (Key key , double value ) {
output image [ key . x idx ] [ key . y idx ] = value ;
return ; }

LaneID get map loc (Key key ) { return 0 ; }
LaneID g e t r e du c e l o c (Key key ) { return 0 ; }
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Fig. 3. Computation binding for the baseline convolution filter program: placing all
the tasks on a single lane.

Serializing the computation on a single lane underutilizes the computation
resources, producing poor good performance. So in Listing 1.5, we modify the
get map loc() and get reduce loc() functions to distribute the tasks to the
available lanes based on keys. With KVMSR’s modularized interface, only the
binding functions are changed, and the rest of the program, e.g., kv map() or
kv reduce(), remains the same, as in Figure 4.

Listing 1.5. Parallel convolution filter program code with static computation location
binding based on the key.

LaneID get map loc (Key key ) {
int idx = key . x idx ∗ input img . dim [ 1 ] + key . y idx ;
return idx % NUMLANES;

}
LaneID g e t r e du c e l o c (Key key ) {

int idx = key . x idx ∗ input img . dim [ 1 ] + key . y idx ;
return idx % NUMLANES;

}

Using this simple example, we show that programmers can express program
function in kv map() or kv reduce() task, conveniently use global data struc-
tures, and orthogonally control the computation location binding to parallelize
the program across the compute resources.

3.2 PageRank

In a push-based PageRank program, each vertex reads its out-neighbors and
sends the PageRank value along that edge. In the reduce stage, each vertex
computes the average of incoming values from its in-neighbors in one pass and
outputs the updated PageRank value [23] as shown in the KVMSR pseudo-code
(see Listing 1.6). If the get map loc() and get reduce loc() are omitted, by
default, execution uses a single lane (sequential execution).
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Fig. 4. The statically distributed Convolution Filter program spreads computation
over N lanes.

Listing 1.6. Baseline PageRank Program Code

typedef int Key ;
struct Vertex{ int degree ; int ne ighbors [ ] ; }

void kv map (Key key , double value ) {
Vertex v = input graph . g e t v e r t e x ( key ) ;
double out p r va lue = value / v . degree ;
for ( int i = 0 ; i < v . degree ; i++)

kv emit ( v . ne ighbors [ i ] , ou t p r va lue ) ;
return ; }

void kv reduce (Key key , double value ) {
Vertex u = output graph . g e t v e r t e x ( key ) ;
u . va lue = one pass avg (u . value , va lue ) ;
return ; }

One way to parallelize the computation is to distribute the keys (in this case
vertices) evenly across the lanes and assign tasks accordingly based on the keys.
The resulting program is presented in Listing 1.7 (the rest of the code remains
the same and is omitted from the pseudo-code).

Listing 1.7. PageRank program with static computation binding based on key

LaneID get map loc (Key key ){ return key % NUMLANES; }
LaneID g e t r e du c e l o c (Key key ){ return key % NUMLANES; }

Alternatively, one can also spread the computation based on the data loca-
tions. For example, in Listing 1.8, we use the function get location(data) to
find the location of data and statically bind computation to where it is located.

Listing 1.8. PageRank with static computation binding based on data location

LaneID get map loc (Key key ){
return g e t l o c a t i o n ( input graph . g e t v e r t e x ( key ) ) ; }

LaneID g e t r e du c e l o c (Key key ){
return g e t l o c a t i o n ( output graph . g e t v e r t e x ( key ) ) ; }
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Static bindings work well for PageRank if the graph is regular and every
vertex has the same number of neighbors. However, most real-world graphs have
skewed degree distributions. Lanes that are assigned high-degree vertices will
have a magnitude more work than the rest, resulting in an imbalanced load
across the machine and bad parallel performance.

To solve the issue raised by irregular data, we present another variant of
PageRank which uses get less busy lane() to dynamically identify lanes with
less load and bind computation accordingly to spread the load. The resulting
program is shown in Listing 1.9.

Listing 1.9. PageRank program with dynamic computation binding based on the
computate load

LaneID get map loc (Key key ) { return g e t l e s s b u s y l a n e ( ) ; }
LaneID g e t r e du c e l o c (Key key ) { return g e t l e s s b u s y l a n e ( ) ; }

Using PageRank, we illustrate several ways of using the get map loc() and
get reduce loc() to statically or dynamically distribute unpredictable irregular
computation across computation resources.

4 Evaluation

We evaluate the KVMSR programming model on a simulated UChicago UpDown
machine, a highly parallel machine designed for 30 million of multithreaded lanes,
and evaluate the model performance using 2,048 lanes [21].

4.1 Performance Model

An UpDown machine has 2,048 lanes, i.e., compute locations, organized in clus-
ters of 64 (one UpDown accelerator), 4 of these accelerators are associated with a
memory stack, and there are 8 HBM2e stacks in a machine [21]. The high degree
of fine-grained parallelism is possible at low power on UpDown because the lanes
have no data caches, only a small 64KB scratchpad memory. Key performance
attributes of the machine include a high degree of multithreading in each lane
with 1 cycle thread creation and termination and a globally addressed memory
with low latency – 70ns within a stack and 150ns to remote stacks.

In our experiments, we simulate various numbers of parallel compute re-
sources up to 2,048 lanes. We utilize the machine’s special feature to iden-
tify a lightly loaded lane and find a lane near a data for implementing the
get less busy lane() and get location(data) function used in PageRank.

4.2 Implementation and Experiments

We implement the KVMSR model on the UpDown machine, called UDKVMSR
(UpDown KVMSR), and evaluate three KVMSR programs: convolution filter,
PageRank, and BFS. The convolution filter and PageRank program follows List-
ing 1.4 and 1.6 in Section 3; all computations in the baseline program run on
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a single lane (serialized execution). Parallel versions distribute the computation
using custom binding functions shown in Listing 1.5, 1.8, and 1.9. We also im-
plemented and evaluated synchronous BFS implemented with UDKVMSR. The
program structure is similar to PageRank but with input and output from fron-
tiers implemented using the parallel hash table and different computations on
the data. The computation-to-compute-location binding functions for BFS are
the same as PageRank’s.

To show the expressiveness of KVMSR, we count the lines of code for describ-
ing program computation/function and the binding of computation to lanes. The
results for each program and variations are presented in Table 1. To evaluate
performance, we execute the programs on the UpDown simulator implemented
using GEM5, reporting the runtime [21, 3]. The KVMSR programs exhibit fine-
grained parallelism, indicated by the number of parallel tasks and the mean
instructions per task. Pagerank is not only fine-grained but extremely irregular
in its task size, as demonstrated by the huge standard deviation. Traditional scal-
able programming models such as MPI and PGAS are unable to exploit such
fine-grained parallelism, as their per-message communication overheads alone
are thousands to millions of instructions.

Table 1. Programs and Key Properties

Program (Dataset) Data Size Num Tasks Data/Task
Mean

Inst/Task
StdDev

Inst/Task

Convolution Filter
(8Kx8K Matrix, 3x3
filter)

512MB 67,076,100 72B 58 0

PageRank & BFS
(RMAT graph scale
16, 216 vertices)

18MB 47,895 432B 116 17,383

4.3 Results

Programmability and Model Expressiveness KVMSR interface allows
computation location binding to be expressed separately from the program’s
parallel computation(function).

Table 2. Code Size for each tuned version of KVMSR programs (Lines of Code).

Application Function Serialized
Baseline

Static Bind-
ing on Key

Static Bind-
ing on Data
Location

Dynamic
binding on
compute load

Convolution Filter 84 0 2 2 N/A

PageRank 58 0 2 2 6

BFS 185 0 2 2 6
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In Table 2, we present line counts for program function code (kv map() and
kv reduce()), and computation binding code (get map loc() and get reduce loc()),
several versions. The baseline does not specify any computation binding, so 0
lines are required. The static bindings in convolution filter, PageRank, and BFS
programs each add 2 lines of code to specify computation location from keys
or data location using get location(data). One line in each of get map loc()

and get reduce loc(). PageRank’s and BFS’s dynamic binding version based
on the compute load (see Listing 1.9) adds 6 lines using the machine’s special fea-
ture get less busy lane(). The result in Table 2 highlights KVMSR’s modular
interface, allowing orthogonal definition of program function and computation
binding, i.e., only relevant functions are modified leaving the rest of the program
untouched.

Benefits of Computation Location Control To evaluate the performance
benefits of the KVMSR model, we run the parallel programs above on the Up-
Down machine and measure their performance on 1-2,048 lanes. The baseline
runs on 1 lane and parallel versions distribute the computation across 256-2,048
lanes.

Fig. 5. Speedup of parallel versions of Convolution, PageRank and BFS with static
binding based on Keys (speedup vs serialized baseline)

The baseline serialized programs fail to utilize the parallel resources, produc-
ing poor performance. Spreading computation across parallel lanes (see Figure
5) produces significant speedups for both applications. Ranging from 213x with
256 lanes to 825x with 2,048 lanes. Convolution scales well, gaining 7.2x for an
8-fold hardware increase from 256 to 2,048 lanes. PageRank and BFS scale less
well, gaining only 1.97x and 1.71x respectively, due to irregularity in parallelism
from the skewed graphs.
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Fig. 6. Speedup of PageRank with static binding based on Keys, based on data loca-
tion, and dynamic binding based on compute load over the serialized baseline (speedup
vs. serialized baseline).

Fig. 7. Speedup of BFS with static binding based on Keys, based on data location,
and dynamic binding based on compute load over the serialized baseline (speedup vs.
serialized baseline).
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Static computation binding based on keys is insufficient to distribute PageR-
ank and BFS’s computation efficiently across the machine, due to their irregu-
larity in task size (see Table 1). Both program’s task size is determined by the
vertex’s degree; highly skewed in an RMAT graph. Therefore, we explored other
binding functions and showed their performance scaling in Figure 6 and 7.

The first alternative is binding computation to locations close to the data.
With improved data locality, PageRank and BFS achieve an average of 1.6x per-
formance improvement compared to the static binding based on keys. However,
the performance scaling from 256 lanes to 2,048 lanes barely changed. The im-
balanced load across the lanes significantly limits the performance scaling as the
hardware parallelism increases.

We’ve shown that static binding functions lack the run-time information to
balance load effectively. In our dynamic binding approach, tasks are distributed
based on the computation load of lanes, placing computation tasks dynamically
on less busy lanes. This dramatically improves PageRank scaling: about 4 times
the speedup for 2,048 lanes from 413x to 1,663x. The improvement on BFS is
less, from 331x to 590x, since the BFS’s parallelism (i.e., frontier size) is spread
across the iterations. Nonetheless, the performance is still better than the static
approaches.

In summary, KVMSR’s flexible and modular interface allows this dramatic
change of computation location binding with a few lines of code.

5 Discussion and Related Work

5.1 Functional Language and Cloud Map-reduce

Functional languages allowed functions to be applied to sets/arrays (map) and
combine the results (reduce) [16, 15, 5]. Originated for expressive power, these
constructs can be used to express parallelism and exploit it on multicore and
larger NUMA shared-memory machines. However, these machines have limited
scalability with the largest systems around 256 cores. Our studies are for 2,048
compute locations, and a full UpDown design has over 30M compute locations.

Cloud companies built a different map-reduce, designed for scale-out, to
internet-scale computations [6, 7]. The key motivation was to exploit the nat-
ural and flexible expression of parallelism. These systems solved the important
problems of reliability (map and reducers), but with the significant restriction of
no shared data structures (across map or reduce functions). The cloud systems
added keys, using them to both express computation function, and indirectly to
control parallelism. However, these systems manage load balance automatically,
depending on hashing and balanced sorts, eschewing programmer involvement.
This works adequately because cloud MapReduce systems typically operate on
coarse-grained tasks, running billions of instructions, many orders of magnitude
larger than the 100 instruction fine-grained tasks we are pursuing.

None of these functional or cloud map-reduce frameworks provide any way
for programmers to control the location of compute or data. KVMSR uses keys
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to control and manage the parallelism. Users can direct the computation location
mapping, balance the load across the system, and synchronize data reduction all
with keys. Such control is the core contribution of KVMSR.

5.2 Message Passing (MPI) & Partitioned Global Address (PGAS)

A popular model for scalable parallelism (and high-performance computing –
HPC), is message passing. Typically, the single-program multiple data (SPMD)
divides data across separate processes with private address space [10]. Each
process computes on local, private data, and in the pure message-passing model,
all remote (global) data is accessed via explicit messages.

The message-passing model makes programming complex distributed struc-
tures tricky (e.g., trees, graphs, hierarchical data). For computations using such
structures for algorithmic efficiency, programming with distributed data and
computation is challenging. The model provides no support for global naming,
so different names must be used (typically software-interpreted) for any global
data structures. As a result, programs using sophisticated pointer-based struc-
tures are difficult to express in this model [18]. If work is dynamically generated
and tied to such structures, e.g., irregular work and parallelism, programming is
even more challenging [13]. If the data or computation is irregular, this produces
complex programming and communication (see high-performance implementa-
tions of irregular and graph applications [18, 17]).

An important extension of the message-passing model adds a partitioned
global address space (PGAS), federating the local process address spaces as in
Global Arrays, UPC++, and ADLB [19, 2, 13]. PGAS programs provide the con-
venience of global naming, easing the programming of complex data structures
and irregular parallelism. However, this convenience does not alter the under-
lying performance challenge, as to achieve speedup work must be aligned and
balanced across the address spaces. This is because ultimately the computation
is done by cores which can only access data in a single private address space.

5.3 Linda & Tuple Space

Linda is another well-established model in the parallel programming world, fo-
cusing on coordinating communication between processes [8]. The key concept in
Linda is its tuple space abstraction, a data repository shared between processes
where each process can independently generate and/or take elements (i.e., tu-
ples) from it. The resulting advantage is communication orthogonality, meaning
that processes involved in communication are decoupled in both time and space
dimensions.

The logical view of KVMSR’s key space, to some extent, resembles Linda’s
tuple space. Despite the similarity, tuple space focuses on concurrent access,
production, and modification of shared tuples. On the other hand, the key space
in KVMSR is mainly for efficiently managing parallel computation on key-value
pairs. One can bundle keys together and partition the key space in different
granularities for KVMSR to exploit parallelism at various levels. This level of
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management is not a focus for tuple space, where communication is at the gran-
ularity of each tuple.

5.4 Scalable Graph Processing Systems

While many graph-processing systems have been constructed, many of them
focus on efficiency and do not scale to large numbers of parallel nodes [11, 22].
Of those designed to scale, those based on map-reduce are designed to scale, but
suffer from massive inefficiency as each vertex and edge operation can cost a
TCP message in a cloud computing cluster [14, 1]. The two implications are that
high performance requires the use of datacenter scale resources (10,000 nodes to
outperform a 128-node SMP) and because they are built on map-reduce, load
balance is performed by the system, and programmer input is not possible. At
the lower efficiency and coarse-grained execution of these systems, sampling with
balanced sorting gives adequate balance. Customized graph computing systems
have been developed that include a custom programming model, vertex-centric
and iterative, and achieve moderate scalability on conventional hardware (16x
on either 16 or 64 nodes), largely benefitting from the increased memory to
compute larger problems [12, 9]. KVSMSR targets general irregular algorithms
and data, a much larger class of applications.

5.5 Discussion

In general, flexibility and modularity in program structure are considered a virtue
in languages and programming models – and application software architecture. In
message-passing programs, code expression locks in data layout/locality choices,
and consequently computation mapping (freezing the data mapping). In PGAS
programs, this problem is lessened, but achieving good performance requires data
movement and work management to align with the parallel compute structure.

By design, KVMSR uses a global address space to enable computation to
be expressed independently of performance tuning. Thus computation binding
to compute resources can be done flexibly with keys. This supports rapid ex-
ploration to find good choices, enabling adaptation to different data properties,
hardware properties, or even dynamical runtime states.

6 Summary and Future Work

We have presented a key-based MapReduce-like programming model, KVMSR,
for optimizing the execution of irregular parallel programs on large-scale parallel
systems. The model enables the expression and management of fine-grained par-
allelism with keys, global naming of data structures and computation locations,
and customized control of compute location binding orthogonal to the expression
of data layout and computation itself with get map loc() and get reduce loc()

functions. We have demonstrated the expressive power and flexibility of the
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KVMSR programming interface and presented the promising initial performance
it can achieve on two irregular parallel programs.

Directions for future work include evaluating KVMSR at larger machines
(millions of lanes) and application scales (millions of vertices). Experiments with
a broader range of applications would also be insightful. A particularly interest-
ing direction is to explore UpDown’s novel machine mechanisms to dynamically
choose computation location using the application and runtime information.
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