
Benchmarking Operators in Deep Neural Networks for

Improving Performance Portability of SYCL

First Author1[0000-1111-2222-3333] and Second Author2[1111-2222-3333-4444]

1 Princeton University, Princeton NJ 08544, USA
2 Springer Heidelberg, Tiergartenstr. 17, 69121 Heidelberg, Germany

lncs@springer.com

Abstract. SYCL is a portable programming model for heterogeneous computing,

so it is important to obtain reasonable performance portability of SYCL. Towards

the goal of better understanding and improving performance portability of SYCL

for machine learning workloads, we have been developing benchmarks for basic

operators in deep neural networks (DNNs). These operators could be offloaded

to accelerators such as graphics processing units (GPUs) to speed up computa-

tion. In this paper, we introduce the benchmarks, evaluate the performance of the

operators on GPU-based systems, and describe the causes of the performance gap

between the SYCL and CUDA kernels. We find that the causes are related to the

utilization of the texture cache for read-only data, optimization of the memory

accesses with strength reduction, use of local memory, and register usage per

thread. We hope that the efforts of developing benchmarks for studying perfor-

mance portability will stimulate discussion and interactions within the commu-

nity.

Keywords: Performance Portability, Benchmarks, DNN operators.

1 Introduction

Computing platforms upon which workloads are evaluated differ in the details of the

hardware accelerators and software stacks [1, 2, 3]. Vendor-specific programming li-

braries and languages have been addressing many of these differences. For example,

Compute Unified Device Architecture (CUDA) [4] and Heterogeneous Computing In-

terface for Portability (HIP) [2] are common programming models for NVIDIA and

AMD graphics processing units (GPUs), respectively. However, commonalities among

these programming models exist and several portable programming methods allow for

writing a program targeting multiple platforms [5, 6, 7]. A portable programming

model, which facilitates the execution of a program across multiple computing plat-

forms, could improve programming productivity and exploit performance potentials of

programmable accelerators. In turn, the programming model may be improved in func-

tionality and performance with the evaluation of applications and benchmarks. SYCL

2

is a royalty-free, cross-platform abstraction C++ programming model with an open and

evolving specification for heterogeneous computing [8].

Previous studies evaluate SYCL by comparing the performance of benchmarks and

applications in high-performance computing (HPC) on GPUs with vendors’ program-

ming models. In [9, 10, 11, 12, 13], the results show that whether the performance of

running SYCL is competitive with using a vendor-specific programming model de-

pends on the applications and how they are optimized by developers and compilers. For

example, migrating the optimized bioinformatics workloads in CUDA required signif-

icant code changes, and the SYCL implementation was about 2X slower [10]. After

converting the Rodinia benchmark suite [14] to a variant of SYCL, the researchers ob-

serve that some SYCL kernels achieve performance portability and other kernels see

considerable overhead, varying from 25% to 190%, due to their execution of more GPU

instructions and/or underutilization of GPU resources [12]. While vendor-specific pro-

gramming models are recommended for their maturity in development environment

and libraries for facilitating application development [15], it is important to study and

improve performance and portability for the growth of portable programming models

such as SYCL for heterogeneous computing.

However, obtaining reasonable performance portability requires nontrivial perfor-

mance optimization for deep neural networks (DNNs) in SYCL [16]. The performance

of a neural network implemented in SYCL without optimization is almost 50% slower,

and the optimization could reach 90% of the performance of the CUDA DNN library.

Towards the goal of better understanding and improving performance portability of

SYCL for machine learning workloads, we have been developing a set of benchmarks

for operators used in DNNs. DNNs are usually expressed as computation graphs in

which nodes represent basic operations. These operators may be offloaded to accelera-

tors to speed up computation [17]. In this paper, we focus on an introduction to the

benchmarks and evaluating and understanding performance portability of SYCL using

the benchmarks. In the following sections, we will give a summary of each benchmark,

evaluate the benchmarks in SYCL and CUDA on NVIDIA GPUs, explain the perfor-

mance gaps, discuss related work, and conclude the paper with future work.

2 Background

2.1 Brief Introduction to SYCL

Open Computing Language (OpenCL), a standard maintained by the Khronos group,

has facilitated the development of parallel computing programs for execution on accel-

erators [18, 19]. However, writing an OpenCL program tends to be error-prone [20,

21]. Built on the underlying concepts, portability, and efficiency of OpenCL and ease

of use and flexibility of single-source C++ [22], SYCL combines a host program and a

device program for the simplicity of writing a single program like CUDA, and a com-

piler to statically type-check the correctness of the program. The SYCL buffer and

unified shared memory (USM) are two abstractions for data management [8]. USM is

a pointer-based approach that is similar to the CUDA programming approach.

A routine, which is sent by an application to a graphics device for execution, is often

called a “kernel” in GPU computing. In contrast to CUDA, a SYCL program requires

a programmer to explicitly specify a queue to which kernels are submitted for execution

on a device. A SYCL queue is either in-order or out-of-order. For an in-order queue,

kernels are executed in the order they were submitted to the queue. For an out-of-order

queue, kernels can be executed in an arbitrary order subject to the dependency con-

straints among them. Because CUDA kernels are executed in the order they were

launched, we choose an in-order queue for the SYCL benchmarks for consistency.

2.2 Summary of the Benchmarks for DNN Operators

We have been developing a set of SYCL benchmarks for the operators based on open-

source machine learning frameworks and applications. We will expand the set to rep-

resent more operations from DNN. This section is a summary of the benchmarks listed

in alphabet order. Each benchmark is written with CUDA and SYCL.

Accuracy. The benchmark implements a function for computing prediction accuracy

[23]. The kernel reads a label index from an “index” array, and then accesses the value

of a predicted label (p) from a “label” array with the index. p is compared against each

predicted label in the array. A counter is incremented when the label is larger than p.

When two labels are equal, the counter is incremented based on the comparison of the

labels’ indices. After the comparison of all labels, the accuracy rate is incremented

when the counter’s value is below a threshold.

Adam. The benchmark computes individual adaptive learning rates for parameters

from estimates of first and second moments of the gradients [24]. In the implementation

of the benchmark [25], the kernel reads the scaled gradient, updates biased first moment

and biased second raw moment estimate, computes bias-corrected first moment esti-

mate and second raw moment estimate vector, and finally updates the parameter in each

time step. The size of each parameter and the number of time steps are user-defined.

Attention. The benchmark implements a mechanism that pays attention to what is rel-

evant to the currently processed information through content-based similarity search

[26]. The mechanism is used in different domains of neural network [27]. The imple-

mentation contains three compute kernels. For a “query” vector with d dimensions and

a “key” matrix with n vectors where each vector has d dimensions, the attention mech-

anism first computes a similarity score by a dot product of the “query” vector with each

“key” vector. After this process, a vector of n dimensions is obtained. The vector is then

processed with a function that normalize it into probabilities. Finally, the normalized

vector is used as a weight to compute the weighted sum of vectors from the n × d value

matrix.

4

ChannelShuffle. The benchmark implements the channel-shuffle function that divides

a four-dimensional (4D) tensor into groups and rearranges (shuffle) them while main-

taining the shape of the original tensor [28]. The benchmark evaluates the shuffling

performance for the channel-first and channel-last orderings of a tensor.

ChannelSum. The benchmark implements the channel sum function that computes the

per-channel sums of a 4D tensor [23]. The benchmark evaluates the sum performance

for the channel-first and channel-last orderings of a 4D tensor. For the channel-first

ordering, a 2D GPU thread block is assigned to compute the sums. For the channel-last

ordering, a 1D GPU thread block is assigned to compute the sums. The sum reduction

in a thread block is implemented using a library call for reusable software components

such as CUB [29].

Clink. The benchmark performs inference of a one-hidden-layer N-node long short-

term memory (LSTM) network. The network is a type of recurrent neural networks that

can be used for temporal signal prediction tasks, such as handwriting recognition and

speech recognition [30]. A typical LSTM network comprises a hidden layer and an

output layer. The hidden layer consists of an input gate, a forget gate, a cell gate and an

output gate, a cell node, and a hidden node [31]. At each time step, the network reads

the input, updates the values of all the gates and the nodes, and then generates output

based on the hidden node value. The original implementation was developed for en-

ergy-efficient signal processing on neurofeedback devices. The benchmark requires an

input data file for evaluation.

concat. The benchmark concatenates two tensors into a new tensor [32]. The dimension

of one tensor is batch_size × beam_size × num_head × sequence1 × hidden_dimension

and the dimension of the other tensor batch_size × beam_size × num_head × sequence2

× hidden_dimension. The two tensors have the same shape except in the concatenating

dimension.

CrossEntropy. The benchmark computes a loss function in the backward propagation

phase. The implementation of the benchmark supports data types of half-, single-, and

double-precision floating-point. The performance can be measured with the bandwidth

metric [33].

DenseEmbedding. The benchmark computes the sum of input and dense values and

stores the result in an output array [23]. The dimension of the dense array is batch_size

× embedding dimension. The input and output arrays are accessed with a base address

and an offset. The base address is read from an “offset” array indexed by the batch

number while the offset falls within a range computed by the difference of two consec-

utive offset values.

Dwconv. The benchmark applies a 2D depth-wise convolution [34] over an input signal

composed of several input planes. Each input channel is convolved with its own set of

filters of size K [23]. In the implementation of the benchmark, K ranges from 1 to 4.

The kernel sizes for the height and width dimension are 1, 3, or 5. The stride, padding,

and dilation for both dimensions are one.

Expdist. The benchmark reduces the cross terms computed by a Gaussian transform

[35]. In the implementation of the benchmark [36], the first kernel produces cross terms

for two sets of points using a Gaussian kernel. The second kernel reduces these terms

to a final sum in parallel.

Flip. The benchmark reverses the order of elements over axes of a tensor [23]. After

the flip, the elements are reordered, but the shape of the array is preserved. The bench-

mark assumes that the order of elements over all axes of a tensor will be reversed, and

the sizes of all dimensions are the same.

Gd. The benchmark implements gradient descent to solve a binary classification prob-

lem for sparse features [37]. The benchmark requires an input file for evaluation. The

data are read from the file and stored in memory as a compressed sparse matrix. The

number of iterations for training is 100 by default to reduce the training time.

Gelu. The benchmark applies the Gaussian error linear unit function [38] over the sum

of a source array and a bias array. The approximate algorithm is “tanh” [23]. The source

array is organized as a 3D tensor where a hidden dimension is dimension zero, a se-

quence length is dimension one, and a batch size is dimension two of the tensor. The

bias array is a 1D array in hidden dimension. The two arrays are stored in memory using

the half-precision floating-point format for reduced memory footprint.

Glu. The benchmark applies a gated linear unit function over a tensor. The gating mech-

anism is useful for language mdel as it allows a model to select which words or features

are relevant for predicting the next work [39]. In the implementation of the benchmark,

the split dimension must be divisible by two. It is assumed that the sizes of all dimen-

sions of a tensor are the same.

Logprob. The benchmark computes the log probability of each token in a batch of

sequences [23]. In the implementation of the benchmark, the first kernel applies the

softmax function [40] to an input array of vocabulary size. The second kernel accumu-

lates the probabilities along the sequence dimension in a batch of sequences.

Mask. The benchmark applies mask operations over a region [23]. The mask types are

a sequence mask, a window mask, masks of upper and lower parts of a matrix. Each

mask operation is implemented as a kernel. When a mask is applied, the output value

6

is set with a predefined value (e.g., -1). When not masked, the output value is equal to

the input value.

Maxpool3d. The benchmark applies 3D maxpooling, a form of filtering commonly

used in convolutional neural network, over an image set [41]. The size of the window

to take a maximum over is two, and the stride of the window is equal to the size of the

window.

Meanshift. The benchmark is an implementation of the mean shift clustering algorithm

[42]. There are two implementations of the algorithms. One implementation takes a

tiling approach by using shared local memory available in GPUs while the other does

not utilize any shared memory.

Multinomial. The benchmark returns a tensor where each row contains an index (i.e.,

one sample) sampled from the multinomial probability distribution located in the cor-

responding row of the input tensor. When the input values are weights instead of prob-

abilities, the weights will be normalized to probabilities. The largest index where the

distribution is non-zero will be selected from the distribution [23].

3 Evaluation

3.1 Experimental Setup

We evaluate the benchmarks on four GPU-based computing nodes. On the first node

(P1), the host is an Intel Xeon E5-2698 v4 processor and the device an NVIDIA V100

DGXS GPU with 32 GB device memory. On the second node (P2), the host is an AMD

Ryzen Threadripper 3970X processor and the device an NVIDIA GeForce RTX 3090

GPU with 24 GB memory. On the third node (P3), the host is an Intel Xeon E5-2683

v4 processor and the device an NVIDIA P100 GPU with 12 GB memory. On the fourth

node (P4), the host is an Intel Core i7-9700 processor and the device an NVIDIA Ge-

Force RTX 2080 GPU with 8 GB memory. We compile the SYCL programs targeting

NVIDIA GPUs with the prebuilt CUDA plugin from Codeplay [43] and the Intel

oneAPI toolkit, version 2023.2.0. The versions of the CUDA runtimes in the NVIDIA

HPC software development kits installed on the nodes are 11.8 and up. The optimiza-

tion option is “-O3” and the offloading GPU architectures are “sm_60”, “sm_70”,

“sm_75”, and “sm_86” for both compilers. We run each benchmark four times, and

each run executes the kernel(s) for at least 100 iterations. For each benchmark, we select

the minimum average kernel execution time for performance evaluation.

3.2 Experimental Results

Figure 1 shows the ratios of the SYCL kernel time to the CUDA kernel time on the four

nodes. When the ratio is over one, it means that the SYCL kernel time is longer than

the CUDA kernel time. Because of the limited sizes of the GPU device memories on

P3 and P4, the timing results of the “channelShuffle” and “flip” benchmarks in SYCL

and CUDA are not available. In addition, the result of the “glu” benchmark is not avail-

able on P4. For each node, we compute the average ratio across all benchmarks that

produce valid timing results to measure performance portability of the SYCL kernels.

The average ratios on the four nodes are 1.148, 1.121, 1.099, and 1.095, respectively.

Hence, there exist a performance gap between the CUDA and SYCL kernels on the

NVIDIA GPUs.

Understanding the Performance Gap. Compiler optimizations are often evasive for

application developers, so we attempt to find the causes of the performance gaps based

on the analyses of the GPU assembly codes generated by the compilers and the results

of profiling the kernels using the vendor’s performance profiler.

Utilization of the Texture Cache for Read-only Data. On NVIDIA GPU architectures,

the texture cache often has higher bandwidth and longer latency than the global memory

cache, so it may offer higher performance for an application with sufficient parallelism

Fig. 1. Comparison of the SYCL and CUDA kernel time on the four GPU-based computing

nodes

0 0.5 1 1.5 2

accuracy
adam

attention
attentionMultihead

channelShuffle
channelSum

clink
concat

crossEntropy
denseEmbedding

dwconv
expdist

flip

gd
gelu
glu

logprob
mask

maxpool3d
meanshift

multinomial

Ratios of kernel time in SYCL to kernel time in CUDA on the GPUs

RTX2080 P100 RTX3090 V100

8

to cover the longer latency. On the other hand, the cache can only be used for data that

is read-only for the lifetime of the kernel. The CUDA compiler is not sure that a pointer

in a CUDA kernel references read-only data unless the pointer is marked with both

“const” and “__restrict__” [44].

The SYCL compiler has implemented an experimental extension to the CUDA

backend to allow read-only data to be cached in the texture cache. However, the SYCL

compiler needs to know which data will be cached explicitly from a programmer. To

enable the feature in the SYCL compiler, a SYCL kernel must call the specific function,

as shown in Listing 1, in the device code to cache data. The function will call the ap-

propriate low-level builtin function based on the type of the data the pointer points to.

For example, in the “clink” benchmark, we can cache input and output read-only

weights and biases in the LSTM network to improve the kernel performance and obtain

performance portability.

namespace sycl::ext::oneapi::experimental::cuda {

 template<typename T>

 T ldg(const T* ptr);

 } // namespace sycl::ext::oneapi::experimental::cuda

Listing. 2. The SYCL templated function allows users to load a register variable to the non-

coherent read-only texture cache [45].

Straight-Line Strength Reduction. Programs, which access arrays for matrix multiply

or dot product, usually have unrolled loops (either unrolled automatically by a compiler

or manually by a programmer) that iterate over an array with a fixed access pattern. The

expressions that compute the indices or pointer addresses of these accesses may be par-

tially redundant [46]. For example, in the “attention” benchmark, the last kernel per-

forms dot product by accumulating over the product of the score and value elements.

The relevant code snippets of the kernel are shown in Listing 2. This computation order

does not eliminate the partial redundancy between (i+1)*d and (i+2)*d. However,

(i+2)*d could be replaced with (i+1)*d+d that takes only one extra add operation.

 float sum = 0;

 for (int i = 0; i < n; i++)

 sum += score[i] * value[i * d + j];

Listing. 2. The code snippets for describing the straight-line strength reduction

We find that both compilers can automatically unroll the loop in Listing 2 to increase

instruction-level parallelism. In Listing 3.a, the loop is manually unrolled by a factor of

four to illustrate the effect. However, the SYCL compiler emits inefficient code in terms

of addressing the “value” array by following the source code. In contrast, the CUDA

compiler optimizes the addressing of the strided elements of the “value” array with a

constant offset for the add operations in each loop iteration. Listing 3.b shows the opti-

mization applied in the source code.

Listing 4.a shows the assembly codes generated by the CUDA compiler for the code

snippets in Listing 2. Analyzing the codes (L4, L8, L12) indicates that the compiler can

apply the optimization of strength reduction automatically. Listing 4.b shows the codes

generated by the SYCL compiler after applying the optimization manually. We observe

that the type conversion instructions (L1, L6, L11) are generated by the SYCL compiler

to convert 64-bit signed numbers to 64-bit unsigned numbers. These instructions may

be optimized away when 64-bit signed numbers are considered valid memory addresses

for the load instructions.

1 for (int i = 0; i < n; i += 4) {

2 sum += score[i] * value[i*d + j]

3 sum += score[i+1] * value[(i+1)*d + j]

4 sum += score[i+2] * value[(i+2)*d + j]

5 sum += score[i+3] * value[(i+3)*d + j]

6 }

Listing 3.a. After loop unrolling

1 for (int i = 0; i < n; i++) {

2 p0 = &value[i*d+j]

3 sum += score[i] * (*p0)

4 p1 = p0 + d

5 sum += score[i+1] * (*p1)

6 p2 = p1 + d

7 sum += score[i+2] * (*p2)

8 p3 = p2 + d

9 sum += score[i+3] * (*p3)

10 }

Listing 3.b. After strength reduction

 1 ld.global.nc.f32 %f12, [%rd29];

2 ld.global.nc.f32 %f13, [%rd28];

3 fma.rn.f32 %f14, %f13, %f12, %f29;

4 add.s64 %rd20, %rd29, %rd4;

5 ld.global.nc.f32 %f15, [%rd20];

6 ld.global.nc.f32 %f16, [%rd28+4];

7 fma.rn.f32 %f17, %f16, %f15, %f14;

8 add.s64 %rd21, %rd20, %rd4;

9 ld.global.nc.f32 %f18, [%rd21];

10 ld.global.nc.f32 %f19, [%rd28+8];

11 fma.rn.f32 %f20, %f19, %f18, %f17;

12 add.s64 %rd22, %rd21, %rd4;

13 add.s64 %rd29, %rd22, %rd4;

14 ld.global.nc.f32 %f21, [%rd22];

15 ld.global.nc.f32 %f22, [%rd28+12];

16 fma.rn.f32 %f29, %f22, %f21, %f20;

17 add.s32 %r22, %r22, 4;

18 add.s64 %rd28, %rd28, 16;

Listing 4.a. Assembly codes generated by

the CUDA compiler for the code snippets in

Listing 2

1 cvta.global.u64 %rd15, %rd14;

2 ld.global.nc.f32 %f6, [%rd25];

3 ld.global.nc.f32 %f7, [%rd15];

4 fma.rn.ftz.f32 %f8, %f7, %f6, %f18;

5 add.s64 %rd17, %rd14, %rd16;

6 cvta.global.u64 %rd18, %rd17;

7 ld.global.nc.f32 %f9, [%rd25+4];

8 ld.global.nc.f32 %f10, [%rd18];

9 fma.rn.ftz.f32 %f11, %f10, %f9, %f8;

10 add.s64 %rd19, %rd17, %rd16;

11 cvta.global.u64 %rd20, %rd19;

12 ld.global.nc.f32 %f12, [%rd25+8];

13 ld.global.nc.f32 %f13, [%rd20];

14 fma.rn.ftz.f32 %f14, %f13, %f12, %f11;

15 add.s64 %rd21, %rd20, %rd16;

16 ld.global.nc.f32 %f15, [%rd25+12];

17 ld.global.nc.f32 %f16, [%rd21];

18 fma.rn.ftz.f32 %f18, %f16, %f15, %f14;

19 add.s32 %r14, %r14, 4;

20 add.s64 %rd25, %rd25, 16;

Listing 4.b. Assembly codes generated

by the SYCL compiler after applying the

strength reduction manually

1 .local .align 8 .b8 __local_depot0[16];

2 .reg .b64 %SP;

3 .reg .b64 %SPL;

4 mov.u64 %SPL, __local_depot0;

5 cvta.local.u64 %SP, %SPL;

6 mov.u32 %r11, 0;

7 st.u32 [%SP+8], %r11;

8 mov.u64 %rd3, 0;

9 st.u64 [%SP+0], %rd3;

Listing 5 Assembly codes generated by the SYCL compiler

for local memory allocation and writes

10

Local Memory Allocation. The local space is one of the state spaces defined in CUDA

[43]. The local state space (.local) is private memory for each thread to keep its own

data. We observe that the SYCL compiler allocates such space and stores the contents

of registers in it. Listing 5 lists the assembly codes for memory allocation and writes

generated from the “gelu” benchmark.

Local memory is usually allocated by the CUDA compiler when each thread needs

to keep a local array in a kernel. However, such per-thread array does not exist in the

benchmark kernels. Hence, optimizing away local memory in the SYCL compiler will

reduce the number of issued and executed instructions, improving the throughput of

memory accesses and the raw performance of the kernels.

Register Usage Per Thread. Occupancy is the ratio of the number of active warps per

multiprocessor to the maximum number of possible active warps on NVIDIA GPUs.

Alternatively, it is the percentage of the hardware’s ability to process warps that is ac-

tive. While higher occupancy does not always equate to higher performance, low occu-

pancy always affects the hardware’s ability to hide memory latency, resulting in per-

formance degradation. Register availability is an important factor to determine occu-

pancy. Register storage allows threads to store variables in registers for fast accesses.

However, the register resource must be shared among all threads resident on a multi-

processor. Registers are allocated to an entire thread block. When each thread block

uses too many registers, the number of warps that can be resident on a multiprocessor

is decreased, thereby lowering the occupancy of the multiprocessor.

Profiling the execution of the SYCL and CUDA kernels shows that a SYCL kernel

may require more registers to store all variables specified in a kernel. For example, the

numbers of registers used by each thread is 28 for the CUDA kernel and 48 for the

SYCL kernel in the “multinomial” benchmarks on the V100 GPU. Hence, the theoret-

ical occupancy of the SYCL kernel is only 50%. To reduce the register utilization of

the SYCL kernel and improve the raw performance of the SYCL kernel, we can set the

maximum number of registers per thread manually (i.e., -Xcuda-ptxas -maxrregcount)

at compile-time.

4 Related Work

In addition to the descriptions of the performance gap between the SYCL and CUDA

kernels in this paper, previous studies find other compiler optimizations that could im-

prove performance portability of SYCL in scientific domains. In [47], the authors find

that the SYCL compiler did not automatically unroll a nested loop in the epistasis de-

tection kernel while the CUDA compiler fully unrolls the loop. Unrolling the loop man-

ually with a compiler pragma can significantly improve the kernel performance. After

evaluating a set of bioinformatics kernels in SYCL and CUDA, the authors find that

the use of an out-of-order SYCL queue in a host program and the choices of the math

function from the SYCL math library in device code can lead to the performance gaps

on an NVIDIA GPU [11]. In addition, evaluating the CUDA and SYCL kernels for all-

pairs distance calculation shows that the sizes of memory addresses, widths of memory

accesses, and sub-word accesses contribute to the performance gaps on an NVIDIA

GPU [48]. In [49], the authors conduct a performance portability study of tensor con-

traction using SYCL. They find that one of the major performance differences com-

pared to the CUDA programs arise from differences in register usage. The

“__launch_bounds__” primitive in the CUDA programming language informs the

CUDA compiler of the launch configuration. Then, the compiler will adjust resource

usage based on the configuration. In a molecular docking case study [50], comparing

the performance of the CUDA and SYCL applications show that 2X higher register

pressure in SYCL causes 2X lower kernel occupancy on an NVIDIA GPU. In [51], the

authors show that a newer version of the SYCL compiler reduces the number of diver-

gent branches and instructions for atomic operations, but the CUDA compiler utilizes

fewer registers, reducing the number of memory transfers involving shared memory

and between global memory and the Level-1 cache. While the support of the launch

configuration in SYCL is not complete, these studies indicate that optimizing register

utilization of a SYCL kernel in the compiler is critical regardless of the specification of

launch configuration by a programmer.

5 Conclusion

SYCL is a cross-platform programming model for heterogeneous computing. As a port-

able programming model, obtaining reasonable performance portability is important

for application and compiler developers. In this paper, we introduce the benchmarks

for DNN operators written in CUDA and SYCL, evaluate the performance of the ker-

nels in the benchmarks on the four GPU-based computing platforms, and describe the

causes of the performance gap by analyzing the assembly codes and profiling results

from the toolchains. We find that the utilization of the texture cache for read-only data,

optimization of the memory accesses with strength reduction, the use of local memory,

and the register usage per thread contribute to the performance gap between the SYCL

and CUDA kernels on the GPUs.

Currently, the implementation of the CUDA plugin in the SYCL compiler is more

mature than that of the HIP plugin for AMD GPUs. Our future work will evaluate per-

formance portability of SYCL on AMD GPUs with the development of the compiler

from the community. We hope that our efforts of studying performance portability of

SYCL with the development of benchmarks in multiple programming models will pro-

mote discussion, interactions, and feedback within the community.

References

1. Lindholm, E., Nickolls, J., Oberman, S. and Montrym, J., 2008. NVIDIA Tesla: A unified

graphics and computing architecture. IEEE Micro, 28(2), pp.39-55.

2. Gutierrez, A., Beckmann, B.M., Dutu, A., Gross, J., LeBeane, M., Kalama-tianos, J.,

Kayiran, O., Poremba, M., Potter, B., Puthoor, S. and Sinclair, M.D., 2018, February. Lost

in abstraction: Pitfalls of analyzing GPUs at the intermediate language level. In 2018 IEEE

12

International Symposium on High Performance Computer Architecture (HPCA) (pp. 608-

619). IEEE.

3. Blythe, D., 2020, August. The Xe GPU Architecture. In 2020 IEEE Hot Chips 32 Sympo-

sium (HCS) (pp. 1-27). IEEE Computer Society.

4. Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J., Morton, S., Phillips, E.,

Zhang, Y. and Volkov, V., 2008. Parallel computing experiences with CUDA. IEEE

MICRO, 28(4), pp.13-27.

5. Portability Across DOE Office of Science HPC Facilities. [online] Available: https://perfor-

manceportability.org/

6. Trott, C.R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Elling-wood, N., Gayatri,

R., Harvey, E., Hollman, D.S., Ibanez, D. and Liber, N., 2021. Kokkos 3: Programming

Model Extensions for the Exascale Era. IEEE Transactions on Parallel and Distributed Sys-

tems, 33(4), pp.805-817.

7. Dagum, L. and Menon, R., 1998. OpenMP: an industry standard API for shared-memory

programming. IEEE computational science and engineering, 5(1), pp.46-55.

8. SYCL 2020 Specification (revision 5) [online] https://www.khronos.org/regis-

try/SYCL/specs/sycl-2020/html/sycl-2020.html

9. Homerding, B. and Tramm, J., 2020, April. Evaluating the Performance of the hipSYCL

Toolchain for HPC Kernels on NVIDIA V100 GPUs. In Proceedings of the International

Workshop on OpenCL (pp. 1-7).

10. Haseeb, M., Ding, N., Deslippe, J. and Awan, M., 2021, November. Evaluating Performance

and Portability of a core bioinformatics kernel on multiple vendor GPUs. In 2021 Interna-

tional Workshop on Performance, Portability and Productivity in HPC (P3HPC) (pp. 68-78).

IEEE

11. Jin, Z. and Vetter, J.S., 2022, December. Understanding performance portability of bioin-

formatics applications in SYCL on an NVIDIA GPU. In 2022 IEEE International Confer-

ence on Bioinformatics and Biomedicine (BIBM) (pp. 2190-2195). IEEE.

12. Castaño, G., Faqir-Rhazoui, Y., García, C. and Prieto-Matías, M., 2022. Evaluation of Intel's

DPC++ Compatibility Tool in heterogeneous computing. Journal of Parallel and Distributed

Computing, 165, pp.120-129.

13. Hardy, D.J., Choi, J., Jiang, W. and Tajkhorshid, E., 2022, May. Experiences Porting

NAMD to the Data Parallel C++ Programming Model. In International Workshop on

OpenCL (pp. 1-5).

14. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H. and Skadron, K., 2009,

October. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE Interna-

tional S0ymposium on Workload Characterization (IISWC) (pp. 44-54). IEEE.

15. Marcel Breyer, Alexander Van Craen, and Dirk Pflüger. 2022. A Comparison of SYCL,

OpenCL, CUDA, and OpenMP for Massively Parallel Support Vector Machine Classifica-

tion on Multi-Vendor Hardware. In International Workshop on OpenCL (IWOCL'22). As-

sociation for Computing Machinery, New York, NY, USA, Article 2, 1–12.

https://doi.org/10.1145/3529538.3529980

16. Tanvir, M., Narasimhan, K., Goli, M., El Farouki, O., Georgiev, S. and Ault, I., 2022, May.

Towards performance portability of AI models using SYCL-DNN. In International Work-

shop on OpenCL (pp. 1-3).

17. Li, J., Cao, W., Dong, X., Li, G., Wang, X., Zhao, P., Liu, L. and Feng, X., 2021. Compiler-

assisted Operator Template Library for DNN Accelerators. International Journal of Parallel

Programming, 49, pp.628-645.

18. Munshi, A., Gaster, B., Mattson, T.G. and Ginsburg, D., 2011. OpenCL programming guide.

Pearson Education.

19. Kaeli, D., Mistry, P., Schaa, D. and Zhang, D.P., 2015. Heterogeneous computing with

OpenCL 2.0. Morgan Kaufmann.

20. Li, P., Brunet, E., Trahay, F., Parrot, C., Thomas, G. and Namyst, R., 2015, September.

Automatic OpenCL code generation for multi-device heterogeneous architectures. In 2015

44th International Conference on Parallel Processing (pp. 959-968). IEEE.

21. Steuwer, M. and Gorlatch, S., 2014. SkelCL: a high-level extension of OpenCL for multi-

GPU systems. The Journal of Supercomputing, 69(1), pp.25-33.

22. Stroustrup, B., 2013. The C++ Programming Language. Pearson Education.

23. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L. and Desmaison, A., 2019. Pytorch: An imperative style, high-

performance deep learning library. Advances in neural information processing systems, 32.

24. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In Proc. 3rd Interna-

tional Conference on Learning Representations (ICLR) (ICLR, 2015).

25. Li, S., Fang, J., Bian, Z., Liu, H., Liu, Y., Huang, H., Wang, B. and You, Y., 2021. Colossal-

AI: A unified deep learning system for large-scale parallel training. arXiv preprint

arXiv:2110.14883.

26. Ham, T.J., Jung, S.J., Kim, S., Oh, Y.H., Park, Y., Song, Y., Park, J.H., Lee, S., Park, K.,

Lee, J.W. and Jeong, D.K., 2020, February. A^ 3: Accelerating attention mechanisms in

neural networks with approximation. In 2020 IEEE International Symposium on High Per-

formance Computer Architecture (HPCA) (pp. 328-341). IEEE.

27. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I.

Polosukhin, “Attention is all you need,” in International Conference on Neural Information

Processing Systems, NIPS, 2017.

28. Zhang, X., Zhou, X., Lin, M. and Sun, J., 2018. Shufflenet: An extremely efficient convo-

lutional neural network for mobile devices. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition (pp. 6848-6856).

29. The NVIDIA CUB library, https://docs.nvidia.com/cuda/cub/index.html

30. Chen, Z., Howe, A., Blair, H.T. and Cong, J., 2018, July. CLINK: Compact LSTM inference

kernel for energy efficient neurofeedback devices. In Proceedings of the International Sym-

posium on Low Power Electronics and Design (pp. 1-6).

31. Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural computation,

9(8), pp.1735-1780.

32. Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang, and Lei Li. 2021. LightSeq: A

High Performance Inference Library for Transformers. In Proceedings of the 2021 Confer-

ence of the North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies: Industry Papers, pages 113–120

33. The Intel LLVM Github repository, https://github.com/intel/llvm/issues/5969

34. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.

and Adam, H., 2017. Mobilenets: Efficient convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861.

35. Schoonhoven, R., van Werkhoven, B. and Batenburg, K.J., 2022. Bench-marking optimiza-

tion algorithms for auto-tuning GPU kernels. IEEE Transactions on Evolutionary Computa-

tion.

36. A software development tool for the creation of highly-optimized and tuned GPU applica-

tions, https://github.com/benvanwerkhoven/kernel_tuner

37. C++ implementation of Gradient Descent, Stochastic Gradient Descent for Sparse Data,

https://github.com/CGudapati/BinaryClassification

38. Hendrycks, D. and Gimpel, K., 2016. Gaussian error linear units (GELUs). arXiv preprint

arXiv:1606.08415.

14

39. Dauphin, Y.N., Fan, A., Auli, M. and Grangier, D., 2017, July. Language modeling with

gated convolutional networks. In International conference on machine learning (pp. 933-

941). PMLR.

40. Bengio, Y., Goodfellow, I. and Courville, A., 2017. Deep learning (Vol. 1). Cambridge, MA,

USA: MIT press.

41. OpenCL Labs for PAPAA Summer School 2016 Edition, https://github.com/nachiket/pa-

paa-opencl

42. Implementations of Mean Shift Clustering, https://github.com/w00zie/mean_shift

43. Reyes, R., Brown, G. and Burns, R., 2020, April. Bringing performant support for NVIDIA

hardware to SYCL. In Proceedings of the International Workshop on OpenCL (pp. 1-1).

44. The CUDA programming guide. https://docs.nvidia.com/cuda/parallel-thread-execution/in-

dex.htm

45. The SYCL extensions implemented in the Intel LLVM compiler. https://github.com/in-

tel/llvm/blob/sycl/sycl/doc/extensions/experi-

mental/sycl_ext_oneapi_cuda_tex_cache_read.asciidoc

46. Wu, J., Belevich, A., Bendersky, E., Heffernan, M., Leary, C., Pienaar, J., Roune, B.,

Springer, R., Weng, X. and Hundt, R., 2016, February. gpucc: an open-source GPGPU com-

piler. In Proceedings of the 2016 International Symposium on Code Generation and Opti-

mization (pp. 105-116).

47. Jin, Z. and Vetter, J.S., 2022, August. Performance portability study of epistasis detection

using SYCL on NVIDIA GPU. In Proceedings of the 13th ACM International Conference

on Bioinformatics, Computational Biology and Health Informatics (pp. 1-8).

48. Jin, Z. and Vetter, J.S., 2022, December. Understanding Performance Portability of Bioin-

formatics Applications in SYCL on an NVIDIA GPU. In 2022 IEEE International Confer-

ence on Bioinformatics and Biomedicine (BIBM) (pp. 2190-2195). IEEE.

49. Ozturk, M.E., Asudeh, O., Sabin, G., Sadayappan, P. and Sukumaran-Rajam, A., 2023, May.

A Performance Portability Study Using Tensor Con-traction Benchmarks. In 2023 IEEE

International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (pp.

591-600). IEEE.

50. Leonardo Solis-Vasquez, Edward Mascarenhas, and Andreas Koch. 2023. Ex-periences Mi-

grating CUDA to SYCL: A Molecular Docking Case Study. In Pro-ceedings of the 2023

International Workshop on OpenCL (IWOCL '23). Associ-ation for Computing Machinery,

New York, NY, USA, Article 15, 1–11.

51. Marcel Breyer, Alexander Van Craen, and Dirk Pflüger. 2023. Performance Evolution of

Different SYCL Implementations based on the Parallel Least Squares Support Vector Ma-

chine Library. In Proceedings of the 2023 Interna-tional Workshop on OpenCL (IWOCL

'23). Association for Computing Machinery, New York, NY, USA, Article 24, 1–12.

