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Abstract. SYCL is a portable programming model for heterogeneous computing, 

so it is important to obtain reasonable performance portability of SYCL. Towards 

the goal of better understanding and improving performance portability of SYCL 

for machine learning workloads, we have been developing benchmarks for basic 

operators in deep neural networks (DNNs). These operators could be offloaded 

to accelerators such as graphics processing units (GPUs) to speed up computa-

tion. In this paper, we introduce the benchmarks, evaluate the performance of the 

operators on GPU-based systems, and describe the causes of the performance gap 

between the SYCL and CUDA kernels. We find that the causes are related to the 

utilization of the texture cache for read-only data, optimization of the memory 

accesses with strength reduction, use of local memory, and register usage per 

thread. We hope that the efforts of developing benchmarks for studying perfor-

mance portability will stimulate discussion and interactions within the commu-

nity. 

Keywords: Performance Portability, Benchmarks, DNN operators. 

1 Introduction 

Computing platforms upon which workloads are evaluated differ in the details of the 

hardware accelerators and software stacks [1, 2, 3]. Vendor-specific programming li-

braries and languages have been addressing many of these differences. For example, 

Compute Unified Device Architecture (CUDA) [4] and Heterogeneous Computing In-

terface for Portability (HIP) [2] are common programming models for NVIDIA and 

AMD graphics processing units (GPUs), respectively. However, commonalities among 

these programming models exist and several portable programming methods allow for 

writing a program targeting multiple platforms [5, 6, 7]. A portable programming 

model, which facilitates the execution of a program across multiple computing plat-

forms, could improve programming productivity and exploit performance potentials of 

programmable accelerators. In turn, the programming model may be improved in func-

tionality and performance with the evaluation of applications and benchmarks. SYCL 
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is a royalty-free, cross-platform abstraction C++ programming model with an open and 

evolving specification for heterogeneous computing [8]. 

Previous studies evaluate SYCL by comparing the performance of benchmarks and 

applications in high-performance computing (HPC) on GPUs with vendors’ program-

ming models. In [9, 10, 11, 12, 13], the results show that whether the performance of 

running SYCL is competitive with using a vendor-specific programming model de-

pends on the applications and how they are optimized by developers and compilers. For 

example, migrating the optimized bioinformatics workloads in CUDA required signif-

icant code changes, and the SYCL implementation was about 2X slower [10]. After 

converting the Rodinia benchmark suite [14] to a variant of SYCL, the researchers ob-

serve that some SYCL kernels achieve performance portability and other kernels see 

considerable overhead, varying from 25% to 190%, due to their execution of more GPU 

instructions and/or underutilization of GPU resources [12]. While vendor-specific pro-

gramming models are recommended for their maturity in development environment 

and libraries for facilitating application development [15], it is important to study and 

improve performance and portability for the growth of portable programming models 

such as SYCL for heterogeneous computing. 

However, obtaining reasonable performance portability requires nontrivial perfor-

mance optimization for deep neural networks (DNNs) in SYCL [16]. The performance 

of a neural network implemented in SYCL without optimization is almost 50% slower, 

and the optimization could reach 90% of the performance of the CUDA DNN library. 

Towards the goal of better understanding and improving performance portability of 

SYCL for machine learning workloads, we have been developing a set of benchmarks 

for operators used in DNNs. DNNs are usually expressed as computation graphs in 

which nodes represent basic operations. These operators may be offloaded to accelera-

tors to speed up computation [17]. In this paper, we focus on an introduction to the 

benchmarks and evaluating and understanding performance portability of SYCL using 

the benchmarks. In the following sections, we will give a summary of each benchmark, 

evaluate the benchmarks in SYCL and CUDA on NVIDIA GPUs, explain the perfor-

mance gaps, discuss related work, and conclude the paper with future work. 

2 Background 

2.1 Brief Introduction to SYCL 

Open Computing Language (OpenCL), a standard maintained by the Khronos group, 

has facilitated the development of parallel computing programs for execution on accel-

erators [18, 19]. However, writing an OpenCL program tends to be error-prone [20, 

21]. Built on the underlying concepts, portability, and efficiency of OpenCL and ease 

of use and flexibility of single-source C++ [22], SYCL combines a host program and a 

device program for the simplicity of writing a single program like CUDA, and a com-

piler to statically type-check the correctness of the program. The SYCL buffer and 



unified shared memory (USM) are two abstractions for data management [8]. USM is 

a pointer-based approach that is similar to the CUDA programming approach.  

A routine, which is sent by an application to a graphics device for execution, is often 

called a “kernel” in GPU computing. In contrast to CUDA, a SYCL program requires 

a programmer to explicitly specify a queue to which kernels are submitted for execution 

on a device. A SYCL queue is either in-order or out-of-order. For an in-order queue, 

kernels are executed in the order they were submitted to the queue. For an out-of-order 

queue, kernels can be executed in an arbitrary order subject to the dependency con-

straints among them. Because CUDA kernels are executed in the order they were 

launched, we choose an in-order queue for the SYCL benchmarks for consistency. 

2.2 Summary of the Benchmarks for DNN Operators 

We have been developing a set of SYCL benchmarks for the operators based on open-

source machine learning frameworks and applications. We will expand the set to rep-

resent more operations from DNN. This section is a summary of the benchmarks listed 

in alphabet order. Each benchmark is written with CUDA and SYCL. 

Accuracy. The benchmark implements a function for computing prediction accuracy 

[23]. The kernel reads a label index from an “index” array, and then accesses the value 

of a predicted label (p) from a “label” array with the index. p is compared against each 

predicted label in the array. A counter is incremented when the label is larger than p. 

When two labels are equal, the counter is incremented based on the comparison of the 

labels’ indices. After the comparison of all labels, the accuracy rate is incremented 

when the counter’s value is below a threshold. 

Adam. The benchmark computes individual adaptive learning rates for parameters 

from estimates of first and second moments of the gradients [24]. In the implementation 

of the benchmark [25], the kernel reads the scaled gradient, updates biased first moment 

and biased second raw moment estimate, computes bias-corrected first moment esti-

mate and second raw moment estimate vector, and finally updates the parameter in each 

time step. The size of each parameter and the number of time steps are user-defined. 

Attention. The benchmark implements a mechanism that pays attention to what is rel-

evant to the currently processed information through content-based similarity search 

[26]. The mechanism is used in different domains of neural network [27]. The imple-

mentation contains three compute kernels. For a “query” vector with d dimensions and 

a “key” matrix with n vectors where each vector has d dimensions, the attention mech-

anism first computes a similarity score by a dot product of the “query” vector with each 

“key” vector. After this process, a vector of n dimensions is obtained. The vector is then 

processed with a function that normalize it into probabilities. Finally, the normalized 

vector is used as a weight to compute the weighted sum of vectors from the n × d value 

matrix.  
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ChannelShuffle. The benchmark implements the channel-shuffle function that divides 

a four-dimensional (4D) tensor into groups and rearranges (shuffle) them while main-

taining the shape of the original tensor [28]. The benchmark evaluates the shuffling 

performance for the channel-first and channel-last orderings of a tensor. 

ChannelSum. The benchmark implements the channel sum function that computes the 

per-channel sums of a 4D tensor [23]. The benchmark evaluates the sum performance 

for the channel-first and channel-last orderings of a 4D tensor. For the channel-first 

ordering, a 2D GPU thread block is assigned to compute the sums. For the channel-last 

ordering, a 1D GPU thread block is assigned to compute the sums. The sum reduction 

in a thread block is implemented using a library call for reusable software components 

such as CUB [29]. 

Clink. The benchmark performs inference of a one-hidden-layer N-node long short-

term memory (LSTM) network. The network is a type of recurrent neural networks that 

can be used for temporal signal prediction tasks, such as handwriting recognition and 

speech recognition [30]. A typical LSTM network comprises a hidden layer and an 

output layer. The hidden layer consists of an input gate, a forget gate, a cell gate and an 

output gate, a cell node, and a hidden node [31]. At each time step, the network reads 

the input, updates the values of all the gates and the nodes, and then generates output 

based on the hidden node value. The original implementation was developed for en-

ergy-efficient signal processing on neurofeedback devices. The benchmark requires an 

input data file for evaluation. 

concat. The benchmark concatenates two tensors into a new tensor [32]. The dimension 

of one tensor is batch_size × beam_size × num_head × sequence1 × hidden_dimension 

and the dimension of the other tensor batch_size × beam_size × num_head × sequence2 

× hidden_dimension. The two tensors have the same shape except in the concatenating 

dimension. 

CrossEntropy. The benchmark computes a loss function in the backward propagation 

phase. The implementation of the benchmark supports data types of half-, single-, and 

double-precision floating-point. The performance can be measured with the bandwidth 

metric [33]. 

DenseEmbedding. The benchmark computes the sum of input and dense values and 

stores the result in an output array [23]. The dimension of the dense array is batch_size 

× embedding dimension. The input and output arrays are accessed with a base address 

and an offset. The base address is read from an “offset” array indexed by the batch 

number while the offset falls within a range computed by the difference of two consec-

utive offset values. 



Dwconv. The benchmark applies a 2D depth-wise convolution [34] over an input signal 

composed of several input planes. Each input channel is convolved with its own set of 

filters of size K [23]. In the implementation of the benchmark, K ranges from 1 to 4. 

The kernel sizes for the height and width dimension are 1, 3, or 5. The stride, padding, 

and dilation for both dimensions are one.  

Expdist. The benchmark reduces the cross terms computed by a Gaussian transform 

[35]. In the implementation of the benchmark [36], the first kernel produces cross terms 

for two sets of points using a Gaussian kernel. The second kernel reduces these terms 

to a final sum in parallel. 

Flip. The benchmark reverses the order of elements over axes of a tensor [23]. After 

the flip, the elements are reordered, but the shape of the array is preserved. The bench-

mark assumes that the order of elements over all axes of a tensor will be reversed, and 

the sizes of all dimensions are the same. 

Gd. The benchmark implements gradient descent to solve a binary classification prob-

lem for sparse features [37]. The benchmark requires an input file for evaluation. The 

data are read from the file and stored in memory as a compressed sparse matrix. The 

number of iterations for training is 100 by default to reduce the training time. 

Gelu. The benchmark applies the Gaussian error linear unit function [38] over the sum 

of a source array and a bias array. The approximate algorithm is “tanh” [23]. The source 

array is organized as a 3D tensor where a hidden dimension is dimension zero, a se-

quence length is dimension one, and a batch size is dimension two of the tensor. The 

bias array is a 1D array in hidden dimension. The two arrays are stored in memory using 

the half-precision floating-point format for reduced memory footprint.  

Glu. The benchmark applies a gated linear unit function over a tensor. The gating mech-

anism is useful for language mdel as it allows a model to select which words or features 

are relevant for predicting the next work [39]. In the implementation of the benchmark, 

the split dimension must be divisible by two. It is assumed that the sizes of all dimen-

sions of a tensor are the same.  

Logprob. The benchmark computes the log probability of each token in a batch of 

sequences [23]. In the implementation of the benchmark, the first kernel applies the 

softmax function [40] to an input array of vocabulary size. The second kernel accumu-

lates the probabilities along the sequence dimension in a batch of sequences. 

Mask. The benchmark applies mask operations over a region [23]. The mask types are 

a sequence mask, a window mask, masks of upper and lower parts of a matrix. Each 

mask operation is implemented as a kernel. When a mask is applied, the output value 
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is set with a predefined value (e.g., -1). When not masked, the output value is equal to 

the input value. 

Maxpool3d. The benchmark applies 3D maxpooling, a form of filtering commonly 

used in convolutional neural network, over an image set [41]. The size of the window 

to take a maximum over is two, and the stride of the window is equal to the size of the 

window. 

Meanshift. The benchmark is an implementation of the mean shift clustering algorithm 

[42]. There are two implementations of the algorithms. One implementation takes a 

tiling approach by using shared local memory available in GPUs while the other does 

not utilize any shared memory. 

Multinomial. The benchmark returns a tensor where each row contains an index (i.e., 

one sample) sampled from the multinomial probability distribution located in the cor-

responding row of the input tensor. When the input values are weights instead of prob-

abilities, the weights will be normalized to probabilities. The largest index where the 

distribution is non-zero will be selected from the distribution [23]. 

3 Evaluation 

3.1 Experimental Setup 

We evaluate the benchmarks on four GPU-based computing nodes. On the first node 

(P1), the host is an Intel Xeon E5-2698 v4 processor and the device an NVIDIA V100 

DGXS GPU with 32 GB device memory. On the second node (P2), the host is an AMD 

Ryzen Threadripper 3970X processor and the device an NVIDIA GeForce RTX 3090 

GPU with 24 GB memory. On the third node (P3), the host is an Intel Xeon E5-2683 

v4 processor and the device an NVIDIA P100 GPU with 12 GB memory. On the fourth 

node (P4), the host is an Intel Core i7-9700 processor and the device an NVIDIA Ge-

Force RTX 2080 GPU with 8 GB memory. We compile the SYCL programs targeting 

NVIDIA GPUs with the prebuilt CUDA plugin from Codeplay [43] and the Intel 

oneAPI toolkit, version 2023.2.0. The versions of the CUDA runtimes in the NVIDIA 

HPC software development kits installed on the nodes are 11.8 and up. The optimiza-

tion option is “-O3” and the offloading GPU architectures are “sm_60”, “sm_70”, 

“sm_75”, and “sm_86” for both compilers. We run each benchmark four times, and 

each run executes the kernel(s) for at least 100 iterations. For each benchmark, we select 

the minimum average kernel execution time for performance evaluation. 

3.2 Experimental Results 

Figure 1 shows the ratios of the SYCL kernel time to the CUDA kernel time on the four 

nodes. When the ratio is over one, it means that the SYCL kernel time is longer than 



the CUDA kernel time. Because of the limited sizes of the GPU device memories on 

P3 and P4, the timing results of the “channelShuffle” and “flip” benchmarks in SYCL 

and CUDA are not available. In addition, the result of the “glu” benchmark is not avail-

able on P4. For each node, we compute the average ratio across all benchmarks that 

produce valid timing results to measure performance portability of the SYCL kernels. 

The average ratios on the four nodes are 1.148, 1.121, 1.099, and 1.095, respectively. 

Hence, there exist a performance gap between the CUDA and SYCL kernels on the 

NVIDIA GPUs. 

Understanding the Performance Gap. Compiler optimizations are often evasive for 

application developers, so we attempt to find the causes of the performance gaps based 

on the analyses of the GPU assembly codes generated by the compilers and the results 

of profiling the kernels using the vendor’s performance profiler. 

Utilization of the Texture Cache for Read-only Data. On NVIDIA GPU architectures, 

the texture cache often has higher bandwidth and longer latency than the global memory 

cache, so it may offer higher performance for an application with sufficient parallelism 

 

Fig. 1. Comparison of the SYCL and CUDA kernel time on the four GPU-based computing 

nodes 
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to cover the longer latency. On the other hand, the cache can only be used for data that 

is read-only for the lifetime of the kernel. The CUDA compiler is not sure that a pointer 

in a CUDA kernel references read-only data unless the pointer is marked with both 

“const” and “__restrict__” [44]. 

The SYCL compiler has implemented an experimental extension to the CUDA 

backend to allow read-only data to be cached in the texture cache. However, the SYCL 

compiler needs to know which data will be cached explicitly from a programmer. To 

enable the feature in the SYCL compiler, a SYCL kernel must call the specific function, 

as shown in Listing 1, in the device code to cache data. The function will call the ap-

propriate low-level builtin function based on the type of the data the pointer points to. 

For example, in the “clink” benchmark, we can cache input and output read-only 

weights and biases in the LSTM network to improve the kernel performance and obtain 

performance portability. 

 

namespace sycl::ext::oneapi::experimental::cuda { 

          template<typename T> 

          T ldg(const T* ptr); 

        } // namespace sycl::ext::oneapi::experimental::cuda 

Listing. 2. The SYCL templated function allows users to load a register variable to the non-

coherent read-only texture cache [45]. 

Straight-Line Strength Reduction. Programs, which access arrays for matrix multiply 

or dot product, usually have unrolled loops (either unrolled automatically by a compiler 

or manually by a programmer) that iterate over an array with a fixed access pattern. The 

expressions that compute the indices or pointer addresses of these accesses may be par-

tially redundant [46]. For example, in the “attention” benchmark, the last kernel per-

forms dot product by accumulating over the product of the score and value elements. 

The relevant code snippets of the kernel are shown in Listing 2. This computation order 

does not eliminate the partial redundancy between (i+1)*d and (i+2)*d. However, 

(i+2)*d could be replaced with (i+1)*d+d that takes only one extra add operation. 

 

                   float sum = 0; 

                   for (int i = 0; i < n; i++) 

                     sum += score[i] * value[i * d + j];  

Listing. 2. The code snippets for describing the straight-line strength reduction 

We find that both compilers can automatically unroll the loop in Listing 2 to increase 

instruction-level parallelism. In Listing 3.a, the loop is manually unrolled by a factor of 

four to illustrate the effect. However, the SYCL compiler emits inefficient code in terms 

of addressing the “value” array by following the source code. In contrast, the CUDA 

compiler optimizes the addressing of the strided elements of the “value” array with a 

constant offset for the add operations in each loop iteration. Listing 3.b shows the opti-

mization applied in the source code. 



 

Listing 4.a shows the assembly codes generated by the CUDA compiler for the code 

snippets in Listing 2. Analyzing the codes (L4, L8, L12) indicates that the compiler can 

apply the optimization of strength reduction automatically. Listing 4.b shows the codes 

generated by the SYCL compiler after applying the optimization manually. We observe 

that the type conversion instructions (L1, L6, L11) are generated by the SYCL compiler 

to convert 64-bit signed numbers to 64-bit unsigned numbers. These instructions may 

be optimized away when 64-bit signed numbers are considered valid memory addresses 

for the load instructions. 

1 for (int i = 0; i < n; i += 4) { 

2   sum += score[i] * value[i*d + j]  

3   sum += score[i+1] * value[(i+1)*d + j] 

4   sum += score[i+2] * value[(i+2)*d + j]  

5   sum += score[i+3] * value[(i+3)*d + j] 

6 } 

 

 

 

 

Listing 3.a.  After loop unrolling 

1   for (int i = 0; i < n; i++) { 

2     p0 = &value[i*d+j] 

3     sum += score[i] * (*p0)

4     p1 = p0 + d 

5     sum += score[i+1] * (*p1) 

6     p2 = p1 + d 

7     sum += score[i+2] * (*p2) 

8     p3 = p2 + d 

9     sum += score[i+3] * (*p3) 

10  } 

 

Listing 3.b.  After strength reduction 

 1  ld.global.nc.f32     %f12, [%rd29]; 

2  ld.global.nc.f32     %f13, [%rd28]; 

3  fma.rn.f32           %f14, %f13, %f12, %f29; 

4  add.s64              %rd20, %rd29, %rd4; 

5  ld.global.nc.f32     %f15, [%rd20]; 

6  ld.global.nc.f32     %f16, [%rd28+4]; 

7  fma.rn.f32           %f17, %f16, %f15, %f14; 

8  add.s64              %rd21, %rd20, %rd4; 

9  ld.global.nc.f32     %f18, [%rd21]; 

10 ld.global.nc.f32     %f19, [%rd28+8]; 

11 fma.rn.f32           %f20, %f19, %f18, %f17; 

12 add.s64              %rd22, %rd21, %rd4; 

13 add.s64              %rd29, %rd22, %rd4; 

14 ld.global.nc.f32     %f21, [%rd22]; 

15 ld.global.nc.f32     %f22, [%rd28+12]; 

16 fma.rn.f32           %f29, %f22, %f21, %f20; 

17 add.s32              %r22, %r22, 4; 

18 add.s64              %rd28, %rd28, 16; 

 

Listing 4.a.  Assembly codes generated by 

the CUDA compiler for the code snippets in 

Listing 2  

 

1  cvta.global.u64     %rd15, %rd14; 

2  ld.global.nc.f32    %f6, [%rd25]; 

3  ld.global.nc.f32    %f7, [%rd15]; 

4  fma.rn.ftz.f32      %f8, %f7, %f6, %f18; 

5  add.s64             %rd17, %rd14, %rd16; 

6  cvta.global.u64     %rd18, %rd17; 

7  ld.global.nc.f32    %f9, [%rd25+4]; 

8  ld.global.nc.f32    %f10, [%rd18]; 

9  fma.rn.ftz.f32      %f11, %f10, %f9, %f8; 

10 add.s64             %rd19, %rd17, %rd16; 

11 cvta.global.u64     %rd20, %rd19; 

12 ld.global.nc.f32    %f12, [%rd25+8]; 

13 ld.global.nc.f32    %f13, [%rd20]; 

14 fma.rn.ftz.f32      %f14, %f13, %f12, %f11; 

15 add.s64             %rd21, %rd20, %rd16; 

16 ld.global.nc.f32    %f15, [%rd25+12]; 

17 ld.global.nc.f32    %f16, [%rd21]; 

18 fma.rn.ftz.f32      %f18, %f16, %f15, %f14; 

19 add.s32             %r14, %r14, 4; 

20 add.s64             %rd25, %rd25, 16; 

Listing 4.b.  Assembly codes generated 

by the SYCL compiler after applying the 

strength reduction manually 

 

1     .local .align 8 .b8     __local_depot0[16]; 

2   .reg .b64                %SP; 

3   .reg .b64                %SPL; 

4    mov.u64                 %SPL, __local_depot0; 

5    cvta.local.u64          %SP, %SPL; 

6    mov.u32                 %r11, 0;  

7    st.u32                  [%SP+8], %r11; 

8    mov.u64                 %rd3, 0; 

9    st.u64                  [%SP+0], %rd3; 

 

Listing 5  Assembly codes generated by the SYCL compiler 

for local memory allocation and writes  
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Local Memory Allocation.  The local space is one of the state spaces defined in CUDA 

[43]. The local state space (.local) is private memory for each thread to keep its own 

data. We observe that the SYCL compiler allocates such space and stores the contents 

of registers in it. Listing 5 lists the assembly codes for memory allocation and writes 

generated from the “gelu” benchmark.  

Local memory is usually allocated by the CUDA compiler when each thread needs 

to keep a local array in a kernel. However, such per-thread array does not exist in the 

benchmark kernels. Hence, optimizing away local memory in the SYCL compiler will 

reduce the number of issued and executed instructions, improving the throughput of 

memory accesses and the raw performance of the kernels. 

Register Usage Per Thread. Occupancy is the ratio of the number of active warps per 

multiprocessor to the maximum number of possible active warps on NVIDIA GPUs. 

Alternatively, it is the percentage of the hardware’s ability to process warps that is ac-

tive. While higher occupancy does not always equate to higher performance, low occu-

pancy always affects the hardware’s ability to hide memory latency, resulting in per-

formance degradation. Register availability is an important factor to determine occu-

pancy. Register storage allows threads to store variables in registers for fast accesses. 

However, the register resource must be shared among all threads resident on a multi-

processor. Registers are allocated to an entire thread block. When each thread block 

uses too many registers, the number of warps that can be resident on a multiprocessor 

is decreased, thereby lowering the occupancy of the multiprocessor. 

Profiling the execution of the SYCL and CUDA kernels shows that a SYCL kernel 

may require more registers to store all variables specified in a kernel. For example, the 

numbers of registers used by each thread is 28 for the CUDA kernel and 48 for the 

SYCL kernel in the “multinomial” benchmarks on the V100 GPU. Hence, the theoret-

ical occupancy of the SYCL kernel is only 50%. To reduce the register utilization of 

the SYCL kernel and improve the raw performance of the SYCL kernel, we can set the 

maximum number of registers per thread manually (i.e., -Xcuda-ptxas -maxrregcount) 

at compile-time. 

4 Related Work 

In addition to the descriptions of the performance gap between the SYCL and CUDA 

kernels in this paper, previous studies find other compiler optimizations that could im-

prove performance portability of SYCL in scientific domains. In [47], the authors find 

that the SYCL compiler did not automatically unroll a nested loop in the epistasis de-

tection kernel while the CUDA compiler fully unrolls the loop. Unrolling the loop man-

ually with a compiler pragma can significantly improve the kernel performance. After 

evaluating a set of bioinformatics kernels in SYCL and CUDA, the authors find that 

the use of an out-of-order SYCL queue in a host program and the choices of the math 

function from the SYCL math library in device code can lead to the performance gaps 

on an NVIDIA GPU [11]. In addition, evaluating the CUDA and SYCL kernels for all-

pairs distance calculation shows that the sizes of memory addresses, widths of memory 



accesses, and sub-word accesses contribute to the performance gaps on an NVIDIA 

GPU [48]. In [49], the authors conduct a performance portability study of tensor con-

traction using SYCL. They find that one of the major performance differences com-

pared to the CUDA programs arise from differences in register usage. The 

“__launch_bounds__” primitive in the CUDA programming language informs the 

CUDA compiler of the launch configuration. Then, the compiler will adjust resource 

usage based on the configuration. In a molecular docking case study [50], comparing 

the performance of the CUDA and SYCL applications show that 2X higher register 

pressure in SYCL causes 2X lower kernel occupancy on an NVIDIA GPU. In [51], the 

authors show that a newer version of the SYCL compiler reduces the number of diver-

gent branches and instructions for atomic operations, but the CUDA compiler utilizes 

fewer registers, reducing the number of memory transfers involving shared memory 

and between global memory and the Level-1 cache. While the support of the launch 

configuration in SYCL is not complete, these studies indicate that optimizing register 

utilization of a SYCL kernel in the compiler is critical regardless of the specification of 

launch configuration by a programmer.  

5 Conclusion 

SYCL is a cross-platform programming model for heterogeneous computing. As a port-

able programming model, obtaining reasonable performance portability is important 

for application and compiler developers. In this paper, we introduce the benchmarks 

for DNN operators written in CUDA and SYCL, evaluate the performance of the ker-

nels in the benchmarks on the four GPU-based computing platforms, and describe the 

causes of the performance gap by analyzing the assembly codes and profiling results 

from the toolchains. We find that the utilization of the texture cache for read-only data, 

optimization of the memory accesses with strength reduction, the use of local memory, 

and the register usage per thread contribute to the performance gap between the SYCL 

and CUDA kernels on the GPUs. 

Currently, the implementation of the CUDA plugin in the SYCL compiler is more 

mature than that of the HIP plugin for AMD GPUs. Our future work will evaluate per-

formance portability of SYCL on AMD GPUs with the development of the compiler 

from the community. We hope that our efforts of studying performance portability of 

SYCL with the development of benchmarks in multiple programming models will pro-

mote discussion, interactions, and feedback within the community. 

References 

1. Lindholm, E., Nickolls, J., Oberman, S. and Montrym, J., 2008. NVIDIA Tesla: A unified 

graphics and computing architecture. IEEE Micro, 28(2), pp.39-55. 

2. Gutierrez, A., Beckmann, B.M., Dutu, A., Gross, J., LeBeane, M., Kalama-tianos, J., 

Kayiran, O., Poremba, M., Potter, B., Puthoor, S. and Sinclair, M.D., 2018, February. Lost 

in abstraction: Pitfalls of analyzing GPUs at the intermediate language level. In 2018 IEEE 



12 

International Symposium on High Performance Computer Architecture (HPCA) (pp. 608-

619). IEEE. 

3. Blythe, D., 2020, August. The Xe GPU Architecture. In 2020 IEEE Hot Chips 32 Sympo-

sium (HCS) (pp. 1-27). IEEE Computer Society. 

4. Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J., Morton, S., Phillips, E., 

Zhang, Y. and Volkov, V., 2008. Parallel computing experiences with CUDA. IEEE 

MICRO, 28(4), pp.13-27. 

5. Portability Across DOE Office of Science HPC Facilities. [online] Available: https://perfor-

manceportability.org/ 

6. Trott, C.R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Elling-wood, N., Gayatri, 

R., Harvey, E., Hollman, D.S., Ibanez, D. and Liber, N., 2021. Kokkos 3: Programming 

Model Extensions for the Exascale Era. IEEE Transactions on Parallel and Distributed Sys-

tems, 33(4), pp.805-817. 

7. Dagum, L. and Menon, R., 1998. OpenMP: an industry standard API for shared-memory 

programming. IEEE computational science and engineering, 5(1), pp.46-55. 

8.   SYCL 2020 Specification (revision 5) [online] https://www.khronos.org/regis-

try/SYCL/specs/sycl-2020/html/sycl-2020.html 

9. Homerding, B. and Tramm, J., 2020, April. Evaluating the Performance of the hipSYCL 

Toolchain for HPC Kernels on NVIDIA V100 GPUs. In Proceedings of the International 

Workshop on OpenCL (pp. 1-7). 

10. Haseeb, M., Ding, N., Deslippe, J. and Awan, M., 2021, November. Evaluating Performance 

and Portability of a core bioinformatics kernel on multiple vendor GPUs. In 2021 Interna-

tional Workshop on Performance, Portability and Productivity in HPC (P3HPC) (pp. 68-78). 

IEEE 

11. Jin, Z. and Vetter, J.S., 2022, December. Understanding performance portability of bioin-

formatics applications in SYCL on an NVIDIA GPU. In 2022 IEEE International Confer-

ence on Bioinformatics and Biomedicine (BIBM) (pp. 2190-2195). IEEE. 

12. Castaño, G., Faqir-Rhazoui, Y., García, C. and Prieto-Matías, M., 2022. Evaluation of Intel's 

DPC++ Compatibility Tool in heterogeneous computing. Journal of Parallel and Distributed 

Computing, 165, pp.120-129. 

13. Hardy, D.J., Choi, J., Jiang, W. and Tajkhorshid, E., 2022, May. Experiences Porting 

NAMD to the Data Parallel C++ Programming Model. In International Workshop on 

OpenCL (pp. 1-5). 

14. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H. and Skadron, K., 2009, 

October. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE Interna-

tional S0ymposium on Workload Characterization (IISWC) (pp. 44-54). IEEE. 

15. Marcel Breyer, Alexander Van Craen, and Dirk Pflüger. 2022. A Comparison of SYCL, 

OpenCL, CUDA, and OpenMP for Massively Parallel Support Vector Machine Classifica-

tion on Multi-Vendor Hardware. In International Workshop on OpenCL (IWOCL'22). As-

sociation for Computing Machinery, New York, NY, USA, Article 2, 1–12. 

https://doi.org/10.1145/3529538.3529980 

16. Tanvir, M., Narasimhan, K., Goli, M., El Farouki, O., Georgiev, S. and Ault, I., 2022, May. 

Towards performance portability of AI models using SYCL-DNN. In International Work-

shop on OpenCL (pp. 1-3). 

17. Li, J., Cao, W., Dong, X., Li, G., Wang, X., Zhao, P., Liu, L. and Feng, X., 2021. Compiler-

assisted Operator Template Library for DNN Accelerators. International Journal of Parallel 

Programming, 49, pp.628-645. 

18. Munshi, A., Gaster, B., Mattson, T.G. and Ginsburg, D., 2011. OpenCL programming guide. 

Pearson Education. 



19. Kaeli, D., Mistry, P., Schaa, D. and Zhang, D.P., 2015. Heterogeneous computing with 

OpenCL 2.0. Morgan Kaufmann. 

20. Li, P., Brunet, E., Trahay, F., Parrot, C., Thomas, G. and Namyst, R., 2015, September. 

Automatic OpenCL code generation for multi-device heterogeneous architectures. In 2015 

44th International Conference on Parallel Processing (pp. 959-968). IEEE. 

21. Steuwer, M. and Gorlatch, S., 2014. SkelCL: a high-level extension of OpenCL for multi-

GPU systems. The Journal of Supercomputing, 69(1), pp.25-33. 

22. Stroustrup, B., 2013. The C++ Programming Language. Pearson Education. 

23. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., 

Gimelshein, N., Antiga, L. and Desmaison, A., 2019. Pytorch: An imperative style, high-

performance deep learning library. Advances in neural information processing systems, 32. 

24. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In Proc. 3rd Interna-

tional Conference on Learning Representations (ICLR) (ICLR, 2015). 

25. Li, S., Fang, J., Bian, Z., Liu, H., Liu, Y., Huang, H., Wang, B. and You, Y., 2021. Colossal-

AI: A unified deep learning system for large-scale parallel training. arXiv preprint 

arXiv:2110.14883. 

26. Ham, T.J., Jung, S.J., Kim, S., Oh, Y.H., Park, Y., Song, Y., Park, J.H., Lee, S., Park, K., 

Lee, J.W. and Jeong, D.K., 2020, February. A^ 3: Accelerating attention mechanisms in 

neural networks with approximation. In 2020 IEEE International Symposium on High Per-

formance Computer Architecture (HPCA) (pp. 328-341). IEEE. 

27. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. 

Polosukhin, “Attention is all you need,” in International Conference on Neural Information 

Processing Systems, NIPS, 2017. 

28. Zhang, X., Zhou, X., Lin, M. and Sun, J., 2018. Shufflenet: An extremely efficient convo-

lutional neural network for mobile devices. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition (pp. 6848-6856). 

29. The NVIDIA CUB library, https://docs.nvidia.com/cuda/cub/index.html 

30. Chen, Z., Howe, A., Blair, H.T. and Cong, J., 2018, July. CLINK: Compact LSTM inference 

kernel for energy efficient neurofeedback devices. In Proceedings of the International Sym-

posium on Low Power Electronics and Design (pp. 1-6). 

31. Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural computation, 

9(8), pp.1735-1780. 

32. Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang, and Lei Li. 2021. LightSeq: A 

High Performance Inference Library for Transformers. In Proceedings of the 2021 Confer-

ence of the North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies: Industry Papers, pages 113–120 

33. The Intel LLVM Github repository, https://github.com/intel/llvm/issues/5969 

34. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. 

and Adam, H., 2017. Mobilenets: Efficient convolutional neural networks for mobile vision 

applications. arXiv preprint arXiv:1704.04861. 

35. Schoonhoven, R., van Werkhoven, B. and Batenburg, K.J., 2022. Bench-marking optimiza-

tion algorithms for auto-tuning GPU kernels. IEEE Transactions on Evolutionary Computa-

tion. 

36. A software development tool for the creation of highly-optimized and tuned GPU applica-

tions, https://github.com/benvanwerkhoven/kernel_tuner 

37. C++ implementation of Gradient Descent, Stochastic Gradient Descent for Sparse Data, 

https://github.com/CGudapati/BinaryClassification 

38. Hendrycks, D. and Gimpel, K., 2016. Gaussian error linear units (GELUs). arXiv preprint 

arXiv:1606.08415. 



14 

39. Dauphin, Y.N., Fan, A., Auli, M. and Grangier, D., 2017, July. Language modeling with 

gated convolutional networks. In International conference on machine learning (pp. 933-

941). PMLR. 

40. Bengio, Y., Goodfellow, I. and Courville, A., 2017. Deep learning (Vol. 1). Cambridge, MA, 

USA: MIT press. 

41. OpenCL Labs for PAPAA Summer School 2016 Edition, https://github.com/nachiket/pa-

paa-opencl 

42. Implementations of Mean Shift Clustering, https://github.com/w00zie/mean_shift 

43. Reyes, R., Brown, G. and Burns, R., 2020, April. Bringing performant support for NVIDIA 

hardware to SYCL. In Proceedings of the International Workshop on OpenCL (pp. 1-1). 

44. The CUDA programming guide. https://docs.nvidia.com/cuda/parallel-thread-execution/in-

dex.htm 

45. The SYCL extensions implemented in the Intel LLVM compiler. https://github.com/in-

tel/llvm/blob/sycl/sycl/doc/extensions/experi-

mental/sycl_ext_oneapi_cuda_tex_cache_read.asciidoc 

46. Wu, J., Belevich, A., Bendersky, E., Heffernan, M., Leary, C., Pienaar, J., Roune, B., 

Springer, R., Weng, X. and Hundt, R., 2016, February. gpucc: an open-source GPGPU com-

piler. In Proceedings of the 2016 International Symposium on Code Generation and Opti-

mization (pp. 105-116). 

47. Jin, Z. and Vetter, J.S., 2022, August. Performance portability study of epistasis detection 

using SYCL on NVIDIA GPU. In Proceedings of the 13th ACM International Conference 

on Bioinformatics, Computational Biology and Health Informatics (pp. 1-8). 

48. Jin, Z. and Vetter, J.S., 2022, December. Understanding Performance Portability of Bioin-

formatics Applications in SYCL on an NVIDIA GPU. In 2022 IEEE International Confer-

ence on Bioinformatics and Biomedicine (BIBM) (pp. 2190-2195). IEEE. 

49. Ozturk, M.E., Asudeh, O., Sabin, G., Sadayappan, P. and Sukumaran-Rajam, A., 2023, May. 

A Performance Portability Study Using Tensor Con-traction Benchmarks. In 2023 IEEE 

International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (pp. 

591-600). IEEE. 

50. Leonardo Solis-Vasquez, Edward Mascarenhas, and Andreas Koch. 2023. Ex-periences Mi-

grating CUDA to SYCL: A Molecular Docking Case Study. In Pro-ceedings of the 2023 

International Workshop on OpenCL (IWOCL '23). Associ-ation for Computing Machinery, 

New York, NY, USA, Article 15, 1–11. 

51. Marcel Breyer, Alexander Van Craen, and Dirk Pflüger. 2023. Performance Evolution of 

Different SYCL Implementations based on the Parallel Least Squares Support Vector Ma-

chine Library. In Proceedings of the 2023 Interna-tional Workshop on OpenCL (IWOCL 

'23). Association for Computing Machinery, New York, NY, USA, Article 24, 1–12. 

  


