
Comparing Llama-2 and GPT-3 LLMs for HPC
kernels generation

Pedro Valero-Lara1,∗[0000−0002−1479−4310],
Alexis Huante2[0009−0008−2818−0265]

Mustafa Al Lail2[0009−0000−0326−6363],
William F. Godoy1[0000−0002−2590−5178],
Keita Teranishi1[0000−0001−6647−2690],

Prasanna Balaprakash1[0000−0002−0292−5715],
Jeffrey S. Vetter1[0000−0002−2449−6720]

1 Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
2 Texas A&M International University, Laredo, Texas 78041, USA

∗Corresponding author: valerolarap@ornl.gov

Abstract. We evaluate the use of the open-source Llama-2 model for
generating well-known, high-performance computing kernels (e.g., AXPY,
GEMV, GEMM) on different parallel programming models and lan-
guages (e.g., C++: OpenMP, OpenMP Offload, OpenACC, CUDA, HIP;
Fortran: OpenMP, OpenMP Offload, OpenACC; Python: numpy, Numba,
pyCUDA, cuPy; and Julia: Threads, CUDA.jl, AMDGPU.jl). We built
upon our previous work that is based on the OpenAI Codex, which is a
descendant of GPT-3, to generate similar kernels with simple prompts
via GitHub Copilot. Our goal is to compare the accuracy of Llama-2
and our original GPT-3 baseline by using a similar metric. Llama-2 has
a simplified model that shows competitive or even superior accuracy.
We also report on the differences between these foundational large lan-
guage models as generative AI continues to redefine human-computer
interactions. Overall, Copilot generates codes that are more reliable but
less optimized, whereas codes generated by Llama-2 are less reliable but
more optimized when correct.

Keywords: LLM · HPC · Llama-2 · GPT.

1 Introduction

Generative-AI large language models (LLMs) are transforming the software in-
dustry by automating manual tasks, such as developing, testing, and deploying
applications. The use of LLMs could lead to faster and more cost-effective soft-
ware development. LLMs are also revolutionizing entertainment, education, and
healthcare industries by creating realistic images, text, music, and code. How-
ever, there are social and ethical concerns surrounding LLMs, including the risk
of deep fakes being created and distributed as misinformation or to harm indi-
viduals. Therefore, the risks and benefits of LLMs must be carefully considered
before widespread adoption.

2 Valero-Lara et al.

The emergence of exascale computing presents a challenge in developing soft-
ware for high-performance computing (HPC) systems owing to the varying hard-
ware and programming models in these complex architectures. To address this
challenge, AI-assisted code generation could be used. LLMs can generate code in
commonly used programming languages, including C++, Fortran, Python, and
Julia. This innovation could make software development for HPC more efficient
and manageable. However, limitations exist for AI-assisted code generation given
it may only sometimes produce code that is as efficient or reliable as human-
written code. The current state of practice, the limitations, and the potential of
LLMs must be fully understood to realize their benefits.

The effort described in this paper builds on our previous work [7], in which
we investigated the effectiveness of OpenAI Codex for generating HPC code
for various numerical kernels in different programming languages and models,
including C++, Fortran, Python, and Julia. The study found that the output of
OpenAI Codex for C++ is closely linked to the popularity and sophistication of
programming models. For example, OpenMP [17] and CUDA [15] received high
scores because they are widely used and well-established programming models.
However, HIP [1] received lower scores because it is a newer programming model
that is not as widely used. The study also found that prompts in Fortran or
Python can benefit from incorporating code keywords. However, Julia’s prompts
perform adequately without the need for code keywords for its mature HPC
programming models.

This paper also describes our evaluation of Meta AI’s LLM (Llama-2) for gen-
erating HPC kernels. The version of Llama-2 we used has 70 billion parameters
and was provided by Hugging Chat, an open-source chat bot platform that relies
on LLMs to power its conversations. This platform is built on top of the Hugging
Face ecosystem. Our evaluation involves generating code for three fundamental
numerical kernels: AXPY, GEMV, and GEMM. We then test the resulting 144
kernel codes in four programming languages, C++, Fortran, Python, and Julia,
by using various programming models and compilers. These included OpenMP,
OpenACC [16], CUDA, HIP, numpy [21], Numba [12], cuPy [14], pyCUDA [10],
Julia’s Base Threads [11], CUDA.jl [3], and AMDGPU.jl [18].

The paper is organized as follows: Section 2 provides an overview of related
efforts that have brought attention to these topics in computer science. Section 3
outlines our methodology for generating and evaluating the code with Llama-2.
In Section 4, we present the results of our evaluation and our findings for each
language, kernel, and programming model along with additional keyword inputs
on the generated outputs. Finally, Section 5 presents our conclusions.

2 Related Work

The Generative Pre-trained Transformer 3 (GPT-3) [5] is a game changer in
the evolution of human-computer interactions. Developed by OpenAI,3 GPT-
3 is the third generation of the prediction-based foundational LLM used for

3 https://openai.com/

https://openai.com/

Comparing Llama-2 and GPT-3 LLMs for HPC kernels generation 3

several AI-generated, human-like text applications. GPT-3 is used in several
natural language processing tasks [9], including ChatGPT, due in part to the
large investment ($12 million USD) and size of its training model (175 billion
parameters at 800GB). Hence, GPT-3 and its successor GPT-44 are defining
several societal questions for the near future. Today, we are at the beginning of
a race to develop the best LLM model. In addition to GPT, we can find recently
released foundational LLMs such as Llama-2 [20] and PaLM 25.

As we enter the exascale computing era, which is dominated by the extreme
heterogeneity of hardware and programming models [23], AI-assisted code gen-
eration could play a key role in how we develop, deploy, and test software that
targets HPC systems. Traditional human-readable code in languages such as
C++ [19], Fortran [2], Python [22], and more recently Julia [4], are a straight-
forward application for LLM’s capabilities—capabilities that could help redefine
software development. In fact, this rapidly evolving field was recently surveyed
in our previous work [7], in which we evaluated the performance of the GPT-3
descendant OpenAI Codex for HPC kernel generation by using GitHub Copilot
for several parallel programming models. The quality of the responses depends
largely on the number of repositories and programming model maturity. Nichols
et al. [13] fine-tuned the use of LLMs to improve the generation of OpenMP
pragmas in parallel algorithm implementations, including MPI cases. Chen et
al. [6] presented LM4HPC, a framework to conduct HPC-specific tasks in the
context of LLMs, and highlighted the lack of training and evaluation datasets
in HPC. Hence, we expect to see more work in the convergence of HPC and
generative AI via LLMs because of the field’s rapid evolution. To the best of
our knowledge, this is the first evaluation of Llama-2 for the generation and
correctness of HPC kernels and comparison to our baseline from previous work.

3 Methodology

First, we use prompts similar to those in our previous research [7], which are
simple prompts based on the programming language, kernel, and programming
model. The quality of the prompt is important because it determines how the
LLM will generate the requested code based on the information provided. So,
several adjustments were made to the prompt until Llama-2 was outputting the
code requested. Importantly, the output from the LLM also depends on the data
used to train the model. For example, the LLM may not be trained well enough
for a particular language or model and may therefore produce inaccurate code
no matter the prompt given.

The methodology used in this study involves two main characteristics that
will be discussed in the next subsections: (1) how we prompted Llama-2 for code
generation based on the kernel, parallel programming model, and programming
language and (2) a code correctness metric that will be evaluated by expert
observation.

4 https://openai.com/product/gpt-4
5 https://ai.google/discover/palm2/

https://openai.com/product/gpt-4
https://ai.google/discover/palm2/

4 Valero-Lara et al.

3.1 Experimental Setup

For our experiments, we used the Hugging Chat website, which, as of August
2023, uses the largest model of Llama-2 called Llama-2-70B. We created an
account on Hugging Face to access the necessary features. As shown in Figure 1,
the website features a chat box for the user to input their query for the LLM.

Fig. 1. Hugging Chat website interface.

An example of the prompt and the generated code on Llama-2 is illustrated
in Figure 1. The structure of the prompt is as follows:

– Create 3 code suggestions using the following parameters: 〈Programming
Language〉 〈Programming Model〉 〈Kernel〉 〈Keyword〉.

– Create 3 code suggestions using the following parameters: 〈Programming
Language〉 〈Programming Model〉 〈Kernel〉.

Unlike our previous study based on the GitHub Copilot model [7], which
can provide one or more codes, we must specify the number of code sugges-
tions we want when using Llama-2. Importantly, the first prompt is used for
C++, Fortran, and Python, whereas the second prompt is used only for Julia.
This is because, according to previous research, they determined there was slight
sensitivity in Julia prompts when adding a keyword [7]. For the 〈Kernel〉 sec-
tion, instead of prompting “GEMV” or “GEMM,” we used the full form of the
abbreviations, which are “general matrix-vector multiply” and “general matrix-
matrix multiply,” respectively. This is because Llama-2 does not interpret what
the abbreviations mean. Additionally, Llama-2 has a character limit, so when
prompting for three code suggestions, sometimes it could not finish all three
codes. Whenever this was the case, we prompted the LLM to continue with the

https://huggingface.co/chat/

Comparing Llama-2 and GPT-3 LLMs for HPC kernels generation 5

code generation by saying, “please continue with the code,” “you stopped, please
continue,” or similar.

Next, Table 1 lists all the programming languages, programming models, and
keywords used in this study. We used the AXPY, GEMV, and GEMM kernels for
every programming model. These kernels correspond to one specific operation
of the three different levels of the Basic Linear Algebra Subprograms (BLAS)
library:6 the AXPY level-1 BLAS routine computes a scalar-vector multiplica-
tion, the GEMV level-2 BLAS routine computes a matrix-vector multiplication,
and the GEMM level-3 BLAS routine computes a matrix-matrix operation. The
BLAS library operations increase in complexity with each level. Also, the higher
the level of the BLAS routine, the more possibilities for optimizations.

We used a total of 48 prompts, which resulted in 144 codes generated by
Llama-2. These codes will be evaluated by the correctness metric described in
the next subsection, and we will compare the results to those of the LLM Copilot
model from earlier work [7].

Kernels: AXPY, GEMV, GEMM

Programming Language Programming Model Keyword

C++ OpenMP function
OpenMP(offload) function
OpenACC function
CUDA function
HIP function

Fortran OpenMP subroutine
OpenMP(offload) subroutine
OpenACC subroutine

Python numpy def
Numba def
pyCUDA def
cuPy def

Julia Threads
CUDA
AMDGPU

Table 1. Parameters used for code generation

3.2 Correctness metric

To evaluate the correctness of the generated codes, we use the simple metric
approach from our previous work [7]. We consider five levels of correctness and
proficiency labels between [0], or non-knowledge, and [1], or expert, when observ-
ing the suggested answers provided by Llama-2 for each combination in Table 1.

0 non-knowledge: No code at all or not a single correct code.

6 https://www.netlib.org/blas/

https://www.netlib.org/blas/

6 Valero-Lara et al.

0.25 novice: One correct code, but it includes other several correct or incorrect
programming models (e.g., OpenACC suggestions in an OpenMP prompt).

0.5 learner: One correct code, and there are other incorrect codes, but all of
them use the requested programming model.

0.75 proficient: All codes are correct and use the programming model requested.
1 expert: Only one piece of code is provided, and it is totally correct.

As mentioned, to make the analysis similar to our previous study on the
GitHub Copilot LLM, and to obtain more than one code from Llama-2, we must
specify the number of codes that we want. So, we will use the highest metric
(expert) for cases in which Llama-2 generates all the three requested codes and
does so correctly.

4 Results

The following subsections describe our evaluation of the HPC kernels generated
by the Llama-2 LLM for four different programming languages: C++, Fortran,
Julia, and Python. The code generated by Llama-2 has also been collected and
uploaded to a GitHub repository.7

4.1 C++

C++ has become the primary programming language used for heterogeneous
HPC architectures due to the support that the open-source and vendor com-
munities provide in terms of programming models and compilers. Examples in-
clude OpenMP, OpenACC, and CUDA, among others such as HIP, Kokkos, and
SYCL. In this study, we focused on the most popular, mature, and widely used
programming models in the HPC community: OpenMP, OpenACC, CUDA, and
HIP.

OpenMP OpenMP is considered the de facto standard for parallel program-
ming. The OpenMP codes generated by Llama-2 have the highest quality among
the C++ codes. Notably, Llama-2 can leverage relatively advanced OpenMP
techniques, including tasking (#pragma omp task), atomic operations (#pragma
omp atomic update), and single instruction multiple data (SIMD) primitives
(#pragma omp simd), among others (#pragma omp critical). However, not all
codes are correct. Also, in some cases, the OpenMP code provided used a defined
number of threads. This is very dependent on the architecture to be used. In
general, the number of threads should be equal to the number of cores (#pragma
omp parallel num threads(4)). In some particular cases, in the codes corre-
sponding to the AXPY kernel, Llama-2 provided codes that, although similar
to the operation conducted by this BLAS routine, were not exactly the same.
For instance, the codes did not use a scalar, or they computed other operations,

7 https://github.com/mustafalail/Llama-2-70b-HPC-Kernels

https://github.com/mustafalail/Llama-2-70b-HPC-Kernels

Comparing Llama-2 and GPT-3 LLMs for HPC kernels generation 7

such as dot product. This is not the same for the other operations evaluated
(i.e., matrix-vector and matrix-matrix multiplication) in which the codes pro-
vided were correct and functional.

We also see significant errors for the OpenMP target offloading case. In most
cases, the code generated was a mix of CUDA and OpenMP codes. Also, the
OpenMP primitives used did not correspond to OpenMP target offloading. Un-
like the previous case, all generated codes were incorrect.

OpenACC A similar scenario is observed in the OpenACC case for the AXPY
operation. All codes provided were incorrect and were a mix of CUDA codes with
OpenACC primitives. However, much higher quality was found in the other two
kernels, in which the OpenACC primitives were effectively used. Indeed, we see
some advanced techniques, such as the use of “collapse” to enroll two nested and
independent for loops (#pragma acc loop independent collapse(2)). Also,
we see an effective movement of data between CPU and GPU in some codes and
an effective use of tiling/blocking to decompose the matrices. In this case, the
codes provided for the kernels of the matrix-vector and matrix-matrix multipli-
cations were correct.

HIP For HIP codes, we found the same error in most of the codes that cor-
respond to the computation of the thread index (int ind = hipBlockDim x *

hipBlockIdx x + hipThreadIdx x;). In some cases, this index was not even
computed or it was only partially computed. This relatively simple error breaks
the entire code, even if the rest of the code is correct. Other common errors
found include using the same names for both CPU and GPU memory pointers,
using bi-dimensional blocks of threads to launch the kernels when the kernel
implementation only uses uni-dimensional blocks of threads (or vice-versa), and
the wrong use of GPU shared memory. Also, as in the previous OpenMP and
OpenACC analyses, we saw a mix of HIP and CUDA codes. In this case, we
found errors in all three test cases (AXPY, matrix-vector, and matrix-matrix
multiplications).

CUDA Although we found better quality codes for CUDA than for HIP, the
Llama-2-generated CUDA codes still contained some important errors. For in-
stance, using device function decorators for the kernels implementation
when the correct decorator is global , wrong name of CUDA library functions
(hipCublasSdot), and initializing GPU memory arrays from the CPU are just a
few examples of the errors found. However, all of these errors were found in the
AXPY kernel. The code generated for the other two kernels was correct and free
of errors. In fact, we observed the effective use of important optimization tech-
niques, such as shared memory (shared float smem[32][32];) and regis-
ters (register float rA[32];), which are used to implement relatively com-
plex algorithms based on tiling/blocking for matrix computation.

8 Valero-Lara et al.

4.2 Fortran

Fortran was one of the first widely used programming languages for HPC back
in the 1970s. In fact, with reasonably good support for current HPC standards,
Fortan is still an important programming language for HPC. In the Fortran com-
munity, there are two predominant parallel programming models: (1) OpenMP,
which is more focused on providing parallel codes for CPUs, and (2) OpenACC,
which is more focused on GPUs.

OpenMP Unlike the C++ codes generated by Llama-2 for OpenMP, we see
much better results from Llama-2 when generating Fortran code for OpenMP,
especially for the AXPY routine. All generated codes were correct and made
use of a scalar. Also, the code generated for the other two kernels used the
OpenMP decorators efficiently. Notably, although no advanced OpenMP prim-
itives (e.g., SIMD, collapse) were used, relatively highly optimized algorithms
based on tiling/blocking for the matrix-matrix multiplication kernels were used.
Unfortunately, this was not the case for OpenMP target offloading, a case in
which all the codes provided did not make correct use of the OpenMP primi-
tives.

OpenACC For OpenACC, Llama-2 provided the wrong OpenACC codes for
AXPY kernels and used OpenMP decorators instead of OpenACC ones. Better
codes were generated for the other two kernels, and at least one functional code
was provided. The OpenACC primitives were not used correctly in many cases,
and some of the primitives used do not even exist in the OpenACC standard.

4.3 Julia

Julia provides a dynamic, compiled front end to LLVM to target scientific com-
puting and data science. Julia’s use in HPC is still an area of active exploration [8]
and community engagement. In this section, we evaluate the correctness of three
different Julia packages: Base.Threads.jl, CUDA.jl, and AMDGPU.jl, which are
used for parallel programming on CPUs, NVIDIA GPUs, and AMD GPUs, re-
spectively.

Base.Threads.jl For the parallel CPU codes that use the Base.Threads.jl Julia
package, we found that at least one code provided correct matrix-vector and
matrix-matrix multiplication. Unfortunately, this is not the case for the AXPY
kernel, and all the codes provided for AXPY were invalid. This could be because
of Julia’s novelty as a programming language in HPC. Notably, in some cases,
it can be challenging to generate different codes that implement exactly the
same requested operation, such as AXPY using Base.Threads.jl. Common errors
found here include missing keywords (@threads) or the use of other packages
(Distributed.jl).

Comparing Llama-2 and GPT-3 LLMs for HPC kernels generation 9

CUDA.jl and AMDGPU.jl The codes generated using the CUDA pack-
age (CUDA.jl) were incorrect. Notably, the generated codes attempted to dec-
orate the nested loops that correspond to the kernels in a way that is similar
to how they are decorated when using the Base.Threads.jl package. However,
using CUDA.jl is not much different from classic CUDA (i.e., the kernels must
be implemented out of the main code, and these must be called/launched by
using a very specific syntax [CUDA.@sync @cuda threads = threads blocks

= blocks kernel(x...)]). We found exactly the same issues for the Llama-2-
generated AMDGPU.jl codes.

4.4 Python

Python is a high-level, interpreted, general-purpose programming language. The
Python community is one of the biggest software communities today together
with C and C++.8 In this study, we used the most popular parallel solutions in
the Python ecosystem: numpy, cuPy, pyCUDA, and Numba. Like with C++, the
codes generated by Llama-2 for the AXPY kernels were incorrect, and they did
not compute the AXPY operation. And again, unlike the AXPY case, Llama-2
provided much better codes for matrix-vector and matrix-matrix multiplication
kernels when using numpy and Numba in particular.

Notably, the quality of these successful cases lies in the use of optimization
techniques, such as the decomposition of the matrices into chunks or doing strid-
den memory accesses. However, we found an error that is common in all of the
codes generated for cuPy: using the shared decorator for the GPU functions
instead of the device decorator, which is the one that must be used. Un-
fortunately, although the rest of the code is correct, this relatively small error
breaks the entire code.

4.5 Llama-2 versus Copilot

This section compares the results of the GitHub Copilot model against the results
presented above. For the Copilot model, we use the results presented by W.
Godoy et al. [7]. The codes generated by the Copilot model are hosted in a
GitHub repository.9

First, we focus on C++. Figure 2 illustrates the results (correctness) of the
C++ codes generated for OpenMP, OpenMP offload, OpenACC, CUDA, and
HIP. As shown, Copilot can provide at least one correct code for most of the
kernels and programming models, whereas Llama-2 provided correct codes for
OpenMP, OpenACC, and CUDA. Although Llama-2 was unable to provide cor-
rect codes for OpenMP offload and HIP, the codes that it did correctly generate
were higher quality (i.e., optimized) than the ones generated by Copilot.

For Fortran (Figure 3), we have a similar conclusion to that of the C++
study, with the exception of the AXPY kernel. Here, we actually see that Llama-
2 achieved much better performance for the AXPY kernel. Once again, however,

8 https://www.tiobe.com/tiobe-index/
9 https://github.com/keitaTN/Copilot-hpc-kernels

https://www.tiobe.com/tiobe-index/
https://github.com/keitaTN/Copilot-hpc-kernels

10 Valero-Lara et al.

Fig. 2. Results for C++ kernels (left) and programming models (right).

Fig. 3. Results for Fortran kernels (left) and programming models (right).

Llama-2 provided very poor performance for OpenMP offload. Notably, Llama-2
generated high-quality OpenMP codes for all kernels. Copilot still generated at
least one correct code for all kernels and programming models and provided the
same quality except for the AXPY-OpenMP test case.

For Julia, Llama-2 did not generate correct codes for any of the test cases
with the exception of the matrix-vector and matrix-matrix multiplications using
the Base.Threads.jl Julia package. This case contained at least one correct code
(Figure 4). Unlike Llama-2, GitHub Copilot provided correct codes for all tests
except for AMDGPU.jl, for which neither LLM was able to generate correct
codes.

Finally, Figure 5 illustrates the results for the Python codes. Copilot was able
to generate at least one correct code for most of the test cases with the exception
of the level-2 and level-3 BLAS kernels using Numba. Llama-2 provided the best
results for these cases. Llama-2 also generated correct results for some numpy
codes.

Overall, the main difference between the Copilot and Llama-2 LLMs is that,
although Copilot can provide at least one correct code for most of the pro-
gramming languages and models (albeit the generated codes are not optimized),
Llama-2 is more aggressive in terms of optimizations, thereby providing well-

Comparing Llama-2 and GPT-3 LLMs for HPC kernels generation 11

Fig. 4. Results for Julia kernels (left) and programming models (right).

Fig. 5. Results for Python kernels (left) and programming models (right).

optimized codes at the cost of generating incorrect codes in multiple cases. So,
in general, Copilot generates codes that are more reliable but less optimized,
and codes generated by Llama-2 are less reliable but more optimized.

5 Conclusions

We evaluated the Llama-2 model as an HPC code generator for different pro-
gramming languages (e.g., C++, Fortran, Julia, and Python) and models used for
multicore CPUs (e.g., OpenMP, Base.Threads.jl), NVIDIA GPUs (e.g., CUDA,
CUDA.jl, OpenACC, numpy, cuPy, pyCUDA, and Numba), and AMD GPUs
(e.g., HIP and AMDGPU.jl).

Llama-2 can provide good-quality HPC codes for some of the previously
mentioned solutions. When compared with GitHub Copilot, we realized that the
Llama-2 model attempts to provide more optimized codes at the cost of not being
as reliable as Copilot. In this study, Llama-2 was able to generate at least one
correct code for 40% (C++), 66% (Fortran), 22% (Julia), and 33% (Python) of
the test cases. GitHub Copilot provided at least one correct code in 80% (C++),
100% (Fortran), 66% (Julia), and 83% (Python) of the same test cases.

12 Valero-Lara et al.

Acknowledgment

This work is funded by Bluestone, an X-Stack project in the DOE Advanced
Scientific Computing Office with program manager Hal Finkel.

References

1. AMD: AMD ROCm v5.2 Release (June 2022), https://rocmdocs.amd.

com/en/latest/Current_Release_Notes/Current-Release-Notes.html#

amd-rocm-v5-2-release
2. Backus, J.W., Heising, W.P.: Fortran. IEEE Transactions on Electronic Computers

EC-13(4), 382–385 (1964). https://doi.org/10.1109/PGEC.1964.263818
3. Besard, T., Foket, C., De Sutter, B.: Effective extensible programming: Unleashing

Julia on GPUs. IEEE Transactions on Parallel and Distributed Systems (2018).
https://doi.org/10.1109/TPDS.2018.2872064

4. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh ap-
proach to numerical computing. SIAM Review 59(1), 65–98 (Jan 2017).
https://doi.org/10.1137/141000671

5. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C.,
Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language models are
few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H.
(eds.) Advances in Neural Information Processing Systems. vol. 33, pp. 1877–1901.
Curran Associates, Inc. (2020), https://proceedings.neurips.cc/paper_files/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

6. Chen, L., Lin, P.H., Vanderbruggen, T., Liao, C., Emani, M., de Supinski, B.:
LM4HPC: Towards Effective Language Model Application in High-Performance
Computing (2023)

7. Godoy, W., Valero-Lara, P., Teranishi, K., Balaprakash, P., Vetter, J.: Evalu-
ation of OpenAI Codex for HPC Parallel Programming Models Kernel Gen-
eration. In: Proceedings of the 52nd International Conference on Parallel Pro-
cessing Workshops. p. 136–144. ICPPW ’23, Association for Computing Ma-
chinery, New York, NY, USA (2023). https://doi.org/10.1145/3605731.3605886,
https://doi.org/10.1145/3605731.3605886

8. Godoy, W.F., Valero-Lara, P., Dettling, T.E., Trefftz, C., Jorquera, I., Sheehy, T.,
Miller, R.G., Tallada, M.G., Vetter, J.S., Churavy, V.: Evaluating performance and
portability of high-level programming models: Julia, Python/Numba, and Kokkos
on exascale nodes. In: IEEE International Parallel and Distributed Processing Sym-
posium, IPDPS 2023 - Workshops, St. Petersburg, FL, USA, May 15-19, 2023.
pp. 373–382. IEEE (2023). https://doi.org/10.1109/IPDPSW59300.2023.00068,
https://doi.org/10.1109/IPDPSW59300.2023.00068

9. Hirschberg, J., Manning, C.D.: Advances in natural language processing. Sci-
ence 349(6245), 261–266 (2015). https://doi.org/10.1126/science.aaa8685, https:
//www.science.org/doi/abs/10.1126/science.aaa8685

10. Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., Fasih,
A.: Pycuda and pyopencl: A scripting-based approach to gpu run-
time code generation. Parallel Computing 38(3), 157–174 (2012).
https://doi.org/https://doi.org/10.1016/j.parco.2011.09.001

https://rocmdocs.amd.com/en/latest/Current_Release_Notes/Current-Release-Notes.html#amd-rocm-v5-2-release
https://rocmdocs.amd.com/en/latest/Current_Release_Notes/Current-Release-Notes.html#amd-rocm-v5-2-release
https://rocmdocs.amd.com/en/latest/Current_Release_Notes/Current-Release-Notes.html#amd-rocm-v5-2-release
https://doi.org/10.1109/PGEC.1964.263818
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1137/141000671
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3605731.3605886
https://doi.org/10.1145/3605731.3605886
https://doi.org/10.1109/IPDPSW59300.2023.00068
https://doi.org/10.1109/IPDPSW59300.2023.00068
https://doi.org/10.1126/science.aaa8685
https://www.science.org/doi/abs/10.1126/science.aaa8685
https://www.science.org/doi/abs/10.1126/science.aaa8685
https://doi.org/https://doi.org/10.1016/j.parco.2011.09.001

Comparing Llama-2 and GPT-3 LLMs for HPC kernels generation 13

11. Knopp, T.: Experimental multi-threading support for the julia programming lan-
guage. In: 2014 First Workshop for High Performance Technical Computing in
Dynamic Languages. pp. 1–5. IEEE (2014)

12. Lam, S.K., Pitrou, A., Seibert, S.: Numba: A LLVM-based Python JIT compiler.
In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in
HPC. pp. 1–6 (2015)

13. Nichols, D., Marathe, A., Menon, H., Gamblin, T., Bhatele, A.: Modeling parallel
programs using large language models (2023)

14. Nishino, R., Loomis, S.H.C.: Cupy: A numpy-compatible library for nvidia gpu cal-
culations. 31st confernce on neural information processing systems 151(7) (2017)

15. NVIDIA: CUDA Toolkit Documentation - v11.7.0 (May 2022), https://

developer.nvidia.com/cuda-toolkit
16. OpenACC Architecture Review Board: OpenACC application program interface

version 3.1 (November 2020), https://www.openacc.org/sites/default/files/
inline-images/Specification/OpenACC-3.1-final.pdf

17. OpenMP Architecture Review Board: OpenMP application program interface
version 5.2 (November 2021), https://www.openmp.org/wp-content/uploads/

OpenMP-API-Specification-5-2.pdf
18. Samaroo, J., Churavy, V., Phillips, W., Ramadhan, A., Barmparesos, J., Tag-

Bot, J., Räss, L., Schanen, M., Besard, T., Smirnov, A., Arakaki, T., Antholzer,
S., Alessandro, Elrod, C., Raayai, M., Hu, T.: JuliaGPU/AMDGPU.jl: v0.4.1
(Aug 2022). https://doi.org/10.5281/zenodo.6949520, https://doi.org/10.5281/
zenodo.6949520

19. Stroustrup, B.: The C++ programming language. Pearson Education (2013)
20. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bash-

lykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Canton-
Ferrer, C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou,
R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A.,
Koura, P.S., Lachaux, M., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Mar-
tinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein,
J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian,
R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z.,
Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic,
R., Edunov, S., Scialom, T.: Llama 2: Open foundation and fine-tuned chat mod-
els. CoRR abs/2307.09288 (2023). https://doi.org/10.48550/arXiv.2307.09288,
https://doi.org/10.48550/arXiv.2307.09288

21. Van Der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for
efficient numerical computation. Computing in science & engineering 13(2), 22–30
(2011)

22. Van Rossum, G., et al.: Python programming language. In: USENIX annual tech-
nical conference. vol. 41, pp. 1–36. Santa Clara, CA (2007)

23. Vetter, J.S., Brightwell, R., Gokhale, M., McCormick, P., Ross, R., Shalf, J., An-
typas, K., Donofrio, D., Humble, T., Schuman, C., Essen, B.V., Yoo, S., Aiken, A.,
Bernholdt, D., Byna, S., Cameron, K., Cappello, F., Chapman, B., Chien, A., Hall,
M., Hartman-Baker, R., Lan, Z., Lang, M., Leidel, J., Li, S., Lucas, R., Mellor-
Crummey, J., Jr., P.P., Peterka, T., Strout, M., Wilke, J.: Extreme heterogeneity
2018 - productive computational science in the era of extreme heterogeneity: Re-
port for DOE ASCR workshop on extreme heterogeneity. Tech. rep., USDOE Office
of Science (SC) (United States) (2018). https://doi.org/10.2172/1473756

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.1-final.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.1-final.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://doi.org/10.5281/zenodo.6949520
https://doi.org/10.5281/zenodo.6949520
https://doi.org/10.5281/zenodo.6949520
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.2172/1473756

	Comparing Llama-2 and GPT-3 LLMs for HPC kernels generation

