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Abstract. Heterogeneous and multi-device nodes are widely used in high-performance computing and
data centers. However, current programming models do not provide simple, transparent, and portable
support for automatically targeting heterogeneous nodes. In this paper, we present SEER, a new C++
library that provides a descriptive programming model to enable applications to benefit from hetero-
geneous nodes in a transparent and portable way across multiple device types. SEER provides efficient
memory management and can select the proper device[s] depending on the computational cost of the
applications. All this is completely transparent to the programmer, thereby providing a highly produc-
tive programming environment. We evaluate the SEER library on two heterogeneous nodes of Summit
(#5 TOP500) and Crusher supercomputers. Notably, the smaller-scale Crusher test bed machine uses
identical hardware and software as ORNL’s Frontier (#1 TOP500). This work also includes a detailed
performance study conducted with a set of representative test cases in high-performance computing
(e.g., Basic Linear Algebra Subprograms (BLAS), Tridiagonal Solve, and Conjugate Gradient). SEER
provides high accelerations of up to 30× for sparse matrix and 8× for batch BLAS applications thanks
to automatic and transparent device selection and multi-device exploitation respectively.
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1 Introduction

Hardware trends have seen a significant increase in the number and kind of devices (CPUs, GPUs, others)
deployed in a single compute node. Examples include some of the fastest supercomputers in the world, such
as Oak Ridge National Laboratory’s (ORNL’s) Summit and Frontier supercomputers. This trend is being
driven by the attractive power-to-performance ratio provided by these new and specialized architectures and
their usefulness for AI, high-performance computing (HPC), and scientific applications. As we continue to
miniaturize chips, Moore’s Law is expected to become obsolete [18], thus limiting the computational ca-
pabilities. Without a better technology solution, vendors have no choice but to develop more specialized
architectures and accelerators to achieve cost-effective performance and scalability, and this push to special-
ized hardware has likewise increased the complexity of HPC and the scientific codes that leverage HPC. In
the future, this trend is only expected to increase.

Current programming models, such as the C++ libraries Kokkos or RAJA [23, 1] cannot automatically
and transparently target multiple devices on a heterogeneous node. This limitation decreases programming
productivity. In this paper, we describe a novel solution that targets performance portability when using mul-
tiple devices within a heterogeneous node. This novel solution is a transparent (i.e., architecture agnostic),
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multi-device, and performance-portable C++ library called SEER. The goal of this work is to create a solu-
tion that allows programmers to focus on the applications and implementations by abstracting architecture-
and vendor-specific details in our programming model, thereby providing a highly productive programming
environment for the end-use developer. The primary contributions of this work are (1) a transparent (i.e.,
architecture-agnostic), performance-portable, and multi-device programming model for heterogeneous sys-
tems; (2) a transparent and intelligent autotuning solution that decides the best device[s] to use at run
time depending on hardware and application characteristics; and (3) a transparent and efficient memory
management system for heterogeneous nodes.

The rest of the paper is organized as follows: Section 2 presents the main characteristics of the C++
SEER library and programming model. We describe the performance analysis in Section 3. Related work is
covered in Section 4. Finally, the conclusions and future directions are summarized in Section 5.

2 The SEER Programming Model

The SEER C++ library (Figure 1) is divided into three main modules: memory (memory management),
compute (parallel constructs), and autotuning (device[s] selection). Although the autotuning module is com-
mon for the different back ends, the other modules (i.e., memory and compute) have different and separate
implementations depending on the back end. We implemented four different back ends, OpenMP, CUDA,
HIP, and OpenMP Target, which correspond to the most relevant parallel programming models used in
current and upcoming HPC architectures (e.g., multicore CPUs and NVIDIA, AMD, and Intel GPUs).

Fig. 1. SEER software stack (left) and SEER and SEER-node fork-join models (right).

SEER differs from other existing data-parallel C++ solutions, such as Kokkos [23], RAJA [1], or SYCL [19]
in four main ways. (1) Instead of the programmer specifying which device to use at compilation time [23,
1], SEER decides in a transparent way which devices (i.e., back ends) to use at run time. (2) The devices
to be used can change along the execution of the application depending on the computational cost of the
operations carried out and the hardware characteristics. (3) Different devices and/or back ends can coexist
and be used simultaneously, thereby providing a real heterogeneous and multi-device solution. (4) In SEER,
the computation is defined as functions. These functions are written in C++ and are compatible for all back
ends; OpenMP (CPUs), OpenMP Target (Intel GPUs), CUDA (NVIDIA GPUs), and HIP (AMD GPUs).

To better illustrate the capacity of the SEER library, Figure 1 depicts an example of the fork-join model
leveraged by SEER and SEER-node compared with the existing Kokkos [23], RAJA [1] and SYCL [19] models.
As with the other models, a SEER code can be seen as a set of parallel constructs, such as parallel for

or parallel reduce. Each of these constructs exploits a fork-join model. In SEER, we can use different
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devices during the execution, which is completely transparent from the programmer’s point of view. A
different granularity can be exploited by each of the parallel constructs depending on the characteristics of
the hardware.

Also, we implemented SEER-node that enables SEER applications with the capacity to use more than
one device in parallel. Applications that can compute multiple parallel constructs on different devices and
separate memory spaces in parallel can benefit from the use of SEER-node.

In the following subsections, we describe in more detail the three main components of the SEER library,
as well as the singularities of the SEER-node extension to enable SEER with the capacity to use multiple
devices in parallel.

2.1 Memory

int SIZE = 2000;

seer::memory *mem_axpy;

seer::memory *mem_dot;

mem_axpy = (seer::memory*) malloc (sizeof(seer::memory));

mem_axpy->num_array = 2;

mem_axpy->size_array[0] = SIZE * sizeof(double);

mem_axpy->size_array[1] = SIZE * sizeof(double);

mem_axpy->num_reduction = 0;

seer::create_mem( mem_axpy, 0 );

mem_dot = ( seer::memory* ) malloc (sizeof(seer::memory));

mem_dot->num_array = 2;

mem_dot->size_array[0] = SIZE * sizeof(double);

mem_dot->size_array[1] = SIZE * sizeof(double);

mem_dot->num_reduction = 1;

mem_dot->size_reduction[0] = 1 * sizeof(double);

seer::create_mem(mem_dot, 1);

// Copy array 0 of the seer memory object mem_dot to array 1 of seer memory object mem_axpy

seer::mem_copy( mem_axpy, 0, 1, mem_dot, 1, 0 );

seer::free_mem(mem_axpy, 0);

seer::free_mem(mem_dot, 1);

Fig. 2. Example of SEER memory management.

The memory management in the SEER library is completely transparent to the programmer. The pro-
grammer does not have to know which device’s memory (memory space) is being used or if necessary memory
transfers between CPU and GPUs or between GPUs are conducted—this is all taken care of without their
intervention. A seer memory object is composed of many memory spaces, as many as the number of devices
available. These memory spaces associated with a seer memory object are managed in a transparent way to
the programmer. The functions will use the corresponding memory space associated with the device where
the function will be executed (see seer::space in Figure 3). A SEER application can use as many seer
memory objects as necessary, and it is generally recommended to use a different seer memory object per
parallel construct that could be computed in parallel. This allows the use of multiple devices and reduces
unnecessary data transfers between devices. We can define a seer memory object by using seer::memory.
This SEER type has different attributes that must be defined before creating a seer memory object, such as
num array and num reduction, which defines the number of arrays and reductions that we will need in our
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application, respectively. We specify the size of the arrays with size array[x] and the size of the results of
the reductions with size reduction[x]. Finally, we can create a memory object with create mem and free a
memory object with free mem. For debugging, as a last argument, we use an integer to identify the memory
objects created. We can also transfer data between different memory objects by using this identification.
Figure 2 shows how to use SEER memory objects.

The memories (memory spaces) of the different devices (CPUs and GPUs) are managed dynamically
according to the decisions taken by SEER library, which depends on the features of the hardware and con-
nectivity, and the computational cost of the applications. SEER can use different device memories (memory
spaces) for the same application in a transparent way, if the needs or computational cost of the applications
change along the execution, as we show in Section 3. If SEER decides to change the target device along the
execution, then the data is transferred from one device to the other without user intervention.

On the other hand, it may be necessary for the applications to copy one specific array of one memory
object to a different memory object. To do that, we can use the seer::mem copy primitive (Figure 2).

We use the corresponding vendor primitives to carry out the allocations on different device memo-
ries or back ends: cuda/hipMalloc for NVIDIA and AMD GPUs and omp target alloc for Intel GPUs.
For the inter-device communication, we use omp target memcpy on the OpenMP Target back end and
cuda/hipMemcpy and cuda/hipMemcpyPeer (for GPU-to-GPU data transfers) for NVIDIA and AMD GPUs.
We do not use any special capacity, such as unified memory, instead, we want to keep a higher control on
the decisions corresponding to the data movement between devices, which can be controlled by the user
manually or by SEER transparently. The use of vendor- or specific- routines for GPU-GPU communication
helps to exploit high-bandwidth networks that connect these devices.

2.2 Compute

SEER has two primary data-parallel constructs, parallel for and parallel reduce, as depicted in Fig-
ure 4. Parallel SEER constructs are composed of five main components: (1) the number of iterations of the
for-loop or reduction, which is typically equal to the size of the arrays; (2) parameters used in the function,
which must be defined previously; (3) memory space used in the function (see previous subsection); (4) the
tuning factor, which is typically equal to the number of operations to be computed by the function. This is
used by the autotuning module to decide which device to use; and finally (5) the function pointer that defines
the operations to be computed in each iteration of the loop. Like the second parameter, this last parameter
must be defined in advance. For parallel reduce, the second parameter corresponds to the identification
of the reduction because one memory space can store the result of multiple reductions. Some details on
the parallel implementation of the different back ends, such as the grid size and block size for CUDA/HIP
implementations, are transparent to the users.

Users must provide the same function for the different back-ends (OpenMP, CUDA, HIP, and OpenMP
Target). Figure 3 shows an implementation of two CUDA functions, as well as the parameters, used in the
parallel constructs depicted in Figure 4. The implementation consists of two Basic Linear Algebra Subpro-
grams (BLAS) level-1 routines: AXPY and DOT product.

These constructs are templated according to the data type of the parameters to be passed to the func-
tion and the function type. For parallel reduce, we have one additional templated parameter to indicate
the type used to store the result of the reduction (see double in Figure 3). As mentioned, every SEER
parallel construct has a different implementation or mapping for each back end. Figure 5 shows part of the
implementations of the parallel for construct on the different back ends.

The code for transferring the function from CPU memory to NVIDIA or AMD GPU memory is not
included in Figure 5. This action is implemented via cuda/hipMemcpyFromSymbol.

2.3 Autotuning

The autotuning module is in charge of device selection for the different parallel constructs. This process
is also completely transparent to the programmer. Estimating the time for the different parallel constructs
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struct paxpy {double alpha;};

struct pdot {};

typedef void(*axpy_func) (int ind, paxpy params, seer::space data_space);

typedef void(*dot_func) (int ind, pdot params, seer::space data_space, double &tmp);

__device__ void axpy(int ind, paxpy param, seer::space mem)

{

double* Y = (double*) mem.array[0];

double* X = (double*) mem.array[1];

Y[ind] += param.alpha * X[ind];

}

__device__ void dot(int ind, pdot param, seer::space mem, double &tmp)

{

double* X = (double*) mem.array[0];

double* Y = (double*) mem.array[1];

tmp += X[ind] * Y[ind];

}

Fig. 3. Example of SEER functions and parameters.

seer::parallel_for <paxpy, axpy_func> ( SIZE, paxpy, mem_axpy, SIZE * 2.0, axpy );

seer::parallel_reduce <pdot, dot_func, double> ( SIZE, 0, pdot, mem_dot, SIZE * 2.0, dot );

Fig. 4. SEER data-parallel constructs.

is a complex task, due to the particularities of such operations, synchronizations, data movements, among
others overheads or latencies [29]. The model used to estimate the time (see Equation 1) is based on the
work described by [24], which was proven to be very effective for automatic device (CPU-GPU) selection.
This process is carried out every time a parallel construct is called.

Time =
Tuning Factor

Device Capacity
+ Communication T ime (1)

We must know the tuning factor to efficiently select the proper device to use. In the test cases evaluated
in this paper, we used the number of operations to be computed by the parallel constructs as a tuning factor.
However, it is also possible to use other characteristics of the applications, such as the size of the matrix or
the number of non-zero elements, among others. The tuning factor is passed as an argument as the fourth
parameter of parallel for and the fifth parameter of parallel reduce. It is also very important to know
the characteristics of the different devices available in our system and how these are connected. To do that,
the programmer can provide a set of flags at compilation time to identify the CPU (SEER CPU ARCH) and
GPU (SEER GPU ARCH) architectures, the number of GPUs (SEER GPU NUM), or how the CPU and GPU are
connected (SEER CPU GPU NET ARCH). Other important hardware features, such as memory bandwidth and
the number of cores are implicit in these flags. Then, the first term corresponds to the ratio between Tuning

Factor and Device Capacity. This last is a combination of the performance provided by the different
devices (CPUs and GPUs), in terms of GFLOPs, and other components, such as the memory bandwidth of
the different devices and the latency (CPU-GPU and GPU-GPU communication bandwidth) of the networks
connecting the different devices.

The Communication T ime factor is considered only if it is necessary to make any data transfer between
devices. We keep the information about the location of every memory space along the life cycle of the
applications. So, the decision about which device to use also depends on the overhead corresponding to the
memory transfer between different devices. This term basically estimates the necessary time to transfer the
data used by the parallel construct between the different devices, taking into account the bandwidth and
latency of the network topology of our heterogeneous system.
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//CUDA and HIP kernel

__global__

void kernel_parallel_for(int n, params p, seer::space *mem, function* f){

int ind = threadIdx.x + blockIdx.x * blockDim.x;

if ( ind < n ){

seer::space data_dev;

data_dev.array = data_space->array;

(*f)( ind, p, data_dev );

}

}

//SEER parallel for implementations

void parallel_for(int n, params p, seer::memory *mem, function f){

//OpenMP

#pragma omp parallel for shared(mem) num_threads(num_threads)

for ( int i = 0; i < n; i++ ){

f( i, p, mem->arr_host);

}

//OpenMP Target

#pragma omp target teams distribute parallel for \

map(to:f) map(mem->arr_device[dev_id])

for ( int i = 0; i < n; i++ ){

f( i, p, mem->arr_device[dev_id] );

}

//CUDA

kernel_parallel_for<<< num_blocks, block_size >>> ( n, p, &mem->arr_device[dev_id], f );

cudaDeviceSynchronize();

//HIP

hipLaunchKernelGGL ( kernel_parallel_for, num_blocks, block_size , 0, 0, n, p,

mem->arr_device[dev_id], f );↪→

hipDeviceSynchronize();

}

Fig. 5. Pseudocode of the parallel for construct implementations on the different back ends.

2.4 SEER-node

The SEER-node enables SEER with the capacity to use more than one device in parallel (as shown in
Figure 1) without increasing the complexity of the code and potentially achieving better performance. The
SEER-node extends the SEER model in two aspects: (1) it adds an identification as part of the parameters
of the parallel constructs, and (2) it creates a simple mechanism that allows the programmer to express
this higher level of parallelisms in an agnostic and simple manner by using two macros (SEER FORK(N) and
SEER JOIN()). Also, to distinguish between SEER and SEER-node primitives, the names of the parallel con-
structs are different (e.g., parallel for node and parallel reduce node) and they keep the same interface
for memory management.

These new parallel constructs must be encapsulated inside a fork-join macro. This macro is defined by
using SEER FORK(N) and SEER JOIN() primitives, where N is the parallel degree to be exploited. This degree
can be associated to the characteristics of the application, how many operations (i.e., parallel constructs)
can be run by the application in parallel, or the number of devices in our system (i.e., devices or compute
units in our system). So this factor is limited by either the application or the hardware characteristics.
Figure 6 illustrates a simple example by using the parallel constructs shown in Figure 4. Note that for better
performance, it is better to use a different memory space in each of the parallel constructs, which can be
computed in parallel.

SEER-node is implemented with OpenMP nesting. The number of OpenMP threads used in the upper
level is defined by the parameter used in SEER FORK(N), as we can see in Figure 6. We have different
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SEER_FORK(2)

seer::parallel_for_node <axpy_params, axpy_function> ( SIZE, paxpy, mem_space_0, axpy_op, axpy, 0

);↪→

seer::parallel_reduce_node <dot_params, dot_func, double> ( SIZE, 0, pdot, mem_space_1, dot_op,

dot, 1 );↪→

SEER_JOIN()

Fig. 6. Example of SEER-node data-parallel constructs and macros.

implementations depending on the back ends used in the different parallel constructs. For the CUDA and
HIP implementations, every OpenMP thread is associated with a GPU. This is possible thanks to the
OpenMP + CUDA/HIP interoperability and the cuda/hipSetDevice functions. For the OpenMP Target
back end, the implementation is very similar to the CUDA/HIP implementations, but instead of using
cuda/hipSetDevice, we use openmp target set device. Finally, for the OpenMP back end, we split the
number of OpenMP threads (number of cores available) into the different primary OpenMP threads.

3 Performance Evaluation

We used ORNL’s Summit and Crusher systems for the performance evaluation (Table 1). Summit is equipped
with two POWER9 CPUs and four NVIDIA V100 Volta GPUs per node, and Crusher has one AMD EPYC
7A53 CPU and four AMD MI250X GPUs, each with 2 Graphics Compute Dies (GCDs) for a total of 8
GCDs per node.

We evaluate SEER by using four well-known and characteristic test cases that correspond to some of
the most popular and widely used computational operations in HPC and scientific computing: BLAS level-1
AXPY, Tridiagonal Solve, Conjugate Gradient (CG), and Batched BLAS. We decided to use these test cases
because their characteristics are representative of real scenarios, which will help us evaluate the different
features and capabilities of the SEER library, including transparent device selection depending on the com-
putational cost of the operations and hardware characteristics (AXPY), management of dynamic parallelism
with transparent data transfer and device selection (Tridiagonal Solve), exploitation of a higher level of
parallelism when some parts of the applications can be computed in parallel (CG), and full use of all the
resources available in our heterogeneous and multi-device system (Batched BLAS).

3.1 BLAS Level-1 AXPY (Transparent Device Selection)

For our first test case, we use the AXPY operation, which computes a scalar-vector product and adds the
result to a vector. This is a simple and well-known BLAS Level-1 operation used in multiple applications
and benchmarks [22, 3].

Figure 7 shows the run time for only one CPU (OpenMP) and one GPU (CUDA on Summit and HIP
on Crusher in Figure 7) vs. the run time of SEER, which decides which device to use depending of the
application and hardware characteristics. As shown, although we see a similar trend in both systems, the
result is different in terms of which device is used depending on the size of the vectors. On Summit, SEER
decides to use the CPU for vector sizes smaller than 200,000 and use the GPU for bigger sizes. However, on
Crusher, the CPU is used for vector sizes smaller than 400,000, and the GPU is used for bigger vector sizes.
This is due to the differences in the systems. We see that similar performance is achieved when comparing
SEER with OpenMP (i.e., only the CPU is used) or with CUDA/HIP (i.e., only the GPU is used). However,
we see a relatively higher execution time when using SEER compared with CUDA on SUMMIT. The main
difference between these two codes is that SEER makes use of autotuning to predict the time and make the
device selection. In this case, this overhead is about 7% with respect to CUDA. This may be related to the
computational cost of this operation, as well as the characteristics of the hardware. We do not see such an
overhead when running the same test case on Crusher, and in the other test cases presented below. In most
of the cases, this overhead represents less than < 1% of the total execution time.
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System Summit Crusher System Summit Crusher

—CPU Architecture— —GPU Architecture—

CPU IBM Power9 AMD EPYC 7A53 GPU 4×NVIDIA V100 4×AMD MI250X
8×GCDs

—Connectivity— —Compiler—

GPU-to-GPU NVLink 2.0 (50 GB/s) Infinity Fabric (100 GB/s) CPU xlc V16 amdclang 14
GPU-to-CPU NVLink 2.0 (50 GB/s) Infinity Fabric (36 GB/s) GPU nvcc V11.0.221 hipcc 5.1

—SEER flag— —Compiler flag—

SEER CPU ARCH IBM POWER 9 AMD EPYC 7A53 CPU -mcpu=power9 -march=znver3
SEER GPU ARCH NVIDIA V100 AMD MI250X -mtune=power9 -mtune=znver3
SEER NET ARCH NVLINK 2 NFINITY FABRIC GPU -arch=sm 70 –amdgpu-target
SEER GPU NUM 4 8 =gfx90a

—OpenMP setting—

export OMP NESTED=true
export OMP PLACES=cores

export OMP PROC BIND=(spread,close)

Table 1. Summary of the Summit and Crusher configurations.

Also, we see that SEER is able to select the best device to use according to the application requirements.
Thanks to automatic and transparent device selection, SEER provides accelerations of up to 2.5× and 3.2×
on Summit and Crusher respectively. The speedup is computed as the ratio between the slowest reference
time (either using a CPU [OpenMP] or a GPU [CUDA/HIP]) and SEER time.

Fig. 7. Execution times (left-side y-axis, seconds) and speedup (right-side y-axis) of the SEER AXPY implementation
on Summit (left) and Crusher (right) when increasing the size of the vectors (x-axis). The speedup is computed as the
ratio between the slowest reference time (either using a CPU [OpenMP] or a GPU [CUDA/HIP]) and SEER time.

3.2 Tridiagonal System Solver (Dynamic Parallelism with Transparent Data Transfer and
Device Selection )

The resolution of tridiagonal linear systems [33, 34] is required in many problems of industrial and scien-
tific interest. Examples include alternating-direction implicit methods, Poisson solvers [33, 34], cubic spline
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approximations, numerical ocean models [9], preconditioners for iterative linear solvers [8], and the simula-
tion of the human brain [31], among many others. Usually, solving tridiagonal systems takes most of the
computation time of these applications.

The state-of-the-art method to solve tridiagonal systems sequentially is the Thomas algorithm [33, 34],
which is a specialized application of the Gaussian elimination that leverages the tridiagonal structure of the
system. It consists of two stages commonly denoted as forward elimination and backward substitution.

The algorithm solves a linear Au = y system, where A is a tridiagonal matrix:

A =


b1 c1 0
a2 b2 c2

. . .
. . .
an−1 bn−1 cn−1

an bn

.

Note that the data structures required by this algorithm are three arrays (a, b and c) of size n that
represent the three diagonals of the input matrix and two additional vectors of the same size, u and y, that
store the unknowns of the equation (to be calculated) and the right-hand terms of the equation, respectively.
The implementation of this algorithm does not require the u array because the result is overwritten in the
array y, but we have included u for clarity.

2

1 3 5 7

62

4 8

84

8642

1 3 4 5 6 7 8

Fig. 8. Cyclic reduction (CR) computational pattern.

The algorithm used in this study is the cyclic reduction (CR) [33, 34], which is a parallel alternative to
the Thomas algorithm. CR consists of two phases: reduction and substitution. In each intermediate step of
the reduction phase, all even-indexed (i) equations, aixi−1 + bixi + cixi+1 = di, are reduced. The values of
ai, bi, ci, and di are updated in each step according to

a′i = −ai−1k1, b
′
i = bi − ci−1k1 − ai+1k2 c′i = −ci+1k2, y

′
i = yi − yi−1k1 − yi+1k2

k1=
ai
bi−1

,k2= ci
bi+1

.

After log2 n steps, the system is reduced to a single equation that is solved directly. All odd-indexed un-
knowns, xi, are then solved in the substitution phase by introducing the already computed ui−1 and ui+1

values:
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ui=
y′i−a′ixi−1−c′ixi+1

b′i
.

Overall, the CR algorithm needs 17n operations and 2 log2 n − 1 steps, which is the optimal algorithm in
terms of operations to compute tridiagonal systems. Figure 8 depicts the computational pattern.

This is a complex application to parallelize with two different regions to target for parallelism. One region
corresponds to the beginning of the first step (reduction) and the end of the second step (substitution) and
has a high level of parallelism, where the use of a GPU can be beneficial. The other region corresponds to
the end of the reduction step and the beginning of the substitution step and has a low level of parallelism,
where the use of a CPU is more effective (Figure 8). The characteristics of the hardware and the parallelism
define the boundaries of these areas. As shown in Figure 9, SEER can detect these areas and select the
appropriate device to use. Again, although the trend is similar in both systems, they still exhibit different
behavior due to certain differences. In this case, the difference is in the number of reduction/substitution
steps in which the CPU/GPU is used. The GPU is used in fewer reduction and substitution steps on Crusher
than on Summit.

Fig. 9. Execution time in logarithmic scale (left-side y-axis, seconds) and speedup (right-side y-axis) of the SEER
Cyclic Reduction algorithm implementation on Summit (left) and on Crusher (right), step by step (x-axis). In the x-
axis, R and S mean the Reduction and Substitution steps respectively. The speedup is computed as the ratio between
the slowest reference time (either using a CPU [OpenMP] or a GPU [CUDA/HIP]) and SEER time.

In this case, the performance of both architectures (CPU and GPU) is very different depending on the
step of the CR algorithm. So, the benefit of using SEER with automatic and transparent device selection
provides high accelerations of up to 30× on Summit and 9× on Crusher. Also, while the highest acceleration
is found in the last (first) steps of the reduction (substitution) steps on Summit, we see the opposite scenario
on Crusher. This is due to the differences between both systems. Once again, we see that our library is able
to make good decisions depending on both, hardware features and application requirements, reaching high
performance in each of the steps of the algorithm.

3.3 Conjugate Gradient (Transparent Multi-Device Exploitation Limited by Algorithm
Parallelism)

Conjugate Gradient (CG) is a well-known and widely used iterative method for solving sparse systems of
linear equations. These systems appear in finite difference and finite element methods, partial differential
equations, structural analysis, circuit analysis, and much more linear algebra-related problems [21]. Owing
to the importance of this operation, it is also used to benchmark supercomputer performance. The HPCG
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library1 offers such a benchmark and is optimized for distributed-memory architectures and implemented
in the Message Passing Interface (MPI) and OpenMP. HPCG is used twice a year to update the TOP500
HPCG list,2 which ranks the fastest supercomputers in the world by their CG computing performance.

Owing to the particular characteristics of the CG method, these kinds of problems can benefit from using
SEER-node. Some of the most important and time-consuming steps (parallel constructs) of this method
may be efficiently parallelized, thereby considerably reducing the execution time and making them benefit
more from additional devices. We implemented the plain CG algorithm [22, 3] without a precondition. This
simplifies the study of the optimizations thanks to the elimination of the preconditioning step, which will be
considered in future versions of the code. We must also ensure the convergence of the method by using an
appropriate input matrix. To this end, we generate a diagonal dominant tridiagonal sparse matrix, which is
commonly used in these contexts (e.g., in the HPCG benchmark).

Fig. 10. Execution time in seconds (left-side of the graphs) and speedup (right-side of the graphs) achieved by SEER-
node over SEER for the SEER-node implementation of the CG method on Summit (left) and on Crusher (right) with
increasing problem sizes.

This is a good example of an application for which the degree of parallelism is limited by the application
itself. Although some parts of the CG algorithm can be parallelized, these can only be computed in parallel
selectively with certain other parts of the algorithm due to the data dependencies between them. Several
pairs of DOT products or AXPY operations can be computed in parallel on different devices. This can be
expressed by using SEER-node macros. We must also use two different memory spaces to efficiently exploit
a higher level of parallelism.

Figure 10 shows the run time of SEER and SEER-node for CG computation. As shown, the SEER-
node optimization achieves a 1.6× speedup on Crusher and a 1.4× speedup on Summit when using two
devices w.r.t. the use of one single device (SEER). These speedups represent significant acceleration given
the application’s relatively limited higher-level parallelism. Notably, given the array size of the operations,
only GPUs were used in the tests.

3.4 Batched BLAS (Transparent Multi-Device Exploitation Limited by Hardware
Components)

Batched BLAS is a current trend in HPC in which a large linear algebra problem is decomposed into
batches that contain many sub-problems that can be solved independently before collating the results [5,

1 http://www.hpcg-benchmark.org/
2 https://www.top500.org/lists/hpcg/
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30]. Some applications include multifrontal solvers for sparse linear systems [6], tensor contractions for deep
learning [4], human brain simulation [31], astrophysics, low rank matrix computations [32], computational
fluid dynamics [34], and image among many others [17]. Although most of the literature focuses on using
one device at a time, we were able to implement a simple multi-device Batched BLAS code by using the
SEER-node model.

Unlike the previous test case, Batched BLAS is a clear example of parallelism being limited by the
hardware. It is very common to have many independent problems in batched BLAS, and the number of
problems that can be computed in parallel depends on the number of devices available to compute them
(i.e., four GPUs on Summit and eight GCDs on Crusher). The code modifications required to leverage
more than one device are straightforward. The modification consists of adding two lines of code, one for
SEER FORK(X) and one SEER JOIN, and using the SEER-node primitives for the data-parallel constructs (see
Section 2.4). In this case, X is the number of devices in our system.

Fig. 11. Execution time in seconds (left-side of the graphs) and speedup (right-side of the graphs) achieved by SEER-
node against SEER for the SEER-node implementation of the Batched BLAS AXPY routine on Summit (left) and
on Crusher (right) with increasing batch sizes.

Figure 11 shows the performance gained by using SEER-node. As shown, the acceleration is close to the
theoretical peak: 3× speedup on Summit and 7× speedup on Crusher.

4 Related Work

Historically, heterogeneous computing has involved a single CPU and a single GPU [34]. Moreover, most
efforts were optimized for one application and one particular heterogeneous system [25, 26], and the pro-
grammer had to decide where to run each part of the code, thereby making this a very demanding and
unproductive programming solution.

Although deploying multiple device types is becoming the norm for many HPC hardware configurations,
an important gap exists in the so-called high-level programming models to properly support heterogeneous
implementations. We can divide high-level programming models into two major groups: (1) those based on
pragmas (e.g., OpenMP, OpenACC) and (2) those based on C++ abstraction libraries (e.g., Kokkos [23],
RAJA [1], SYCL).

OpenMP recently incorporated a new list of pragmas for GPUs into its specification [27]. These new
pragmas allow for offloading the execution onto one GPU by using the OpenMP target clause. However,
no OpenMP construct currently targets multiple GPUs. Another important reference about the exploitation
of heterogeneous systems by using pragma-based programming solution is OmpSs [12, 2]. Also, task-based
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runtimes like IRIS [28, 15, 16], XiTAO or Cpp-Taskflow [10] provides a good support for heterogeneous
systems. Similarly, SYCL provides an interface that allows the programmer to use either the CPU or the
GPU by using different queues.OpenMP, SYCL, and other runtimes force programmers to decide which
device to use, and having to choose makes it difficult to develop portable codes for different heterogeneous
configurations.

Typically, using multiple devices with OpenACC [22] has required MPI [13]. Matsumura et al. [14]
developed and proposed an extension to the OpenACC specification to handle multiGPU systems, and they
argued that their extension was competitive with some MPI + OpenACC codes on NVIDIA multiGPU
systems. Unfortunately, this extension was not adopted into the OpenACC standard.

The Kokkos team continues to develop new and important features and optimizations that target per-
formance portability among different architectures, including memory management [7], vectorization [20],
supporting new back-ends, such as SYCL or OpenACC [29]. Kokkos can be successfully integrated or com-
bined with other programming models such as MPI [11] and HPX, among others [35]. However, in both
Kokkos and RAJA, the target architecture must be defined at compilation time when the user specifies
the target architecture (e.g., with the KOKKOS DEVICES flag in Kokkos). One must use KOKKOS DEVICES =

Cuda to generate a binary for NVIDIA GPUs. Also, only a single device can be used. The MPI + Kokkos
interoperability is the current de facto solution for multiple GPUs in Kokkos. Once again, the programmer
is responsible for deciding which device(s) to use in these solutions.

To the best of our knowledge, the work described in this paper is the first time that a fully architecture-
agnostic, multi-device, and performance-portable programming model has been implemented for heteroge-
neous systems.

5 Conclusions & Future Work

We implemented SEER, a novel C++ performance-portable and descriptive programming model that targets
heterogeneous configurations and can handle device selection and data exchange among different devices
automatically and transparently. We have demonstrated the different features of SEER on two heterogeneous
nodes from ORNL’s Summit and Crusher supercomputers for four well-known and characteristic HPC test
cases.

For future work, we plan to (1) use additional architectures (i.e., not just CPUs and GPUs), (2) implement
other back ends based on other programming models (e.g., SYCL) or other run times, (3) extend the current
capacity to more than one device when computing a single parallel construct, and (4) provide new capacities
for better, transparent, and portable exploitation of top-level memory hierarchies on n-dimensional arrays,
among other efforts.
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