Evolution of Parallel Architecture Targets

Moderator: Henry Dietz[0000-0002-3878-881X]
Panelists: Hironori Kasahara, Movahhed Sadeghi, Ishan Thakkar

University of Kentucky, Lexington KY 40506, USA
hankd@engr.uky.edu

Abstract. In the early days of the LCPC workshops, a very large fraction of the
work being done targeted either vector machines or massively-parallel SIMD
(single instruction stream, multiple data stream). This was partly due to their
dominance in the high-performance computing market, but those targets also
were an excellent match for the compiler analysis of the day, which centered on
nested DO loops in Fortran programs. At various points in the history of the
workshop, focus has shifted to a wide range of other types of parallel architec-
tures. With these shifts came some new languages and many different compiler
analysis methods; for example, some emphasized inter-procedural analysis use
while others became focused on data layout and still others dealt with timing
properties and scheduling. An increasing variety of efficiency-critical features
(ECFs) are found in modern computers, and the concept of “dark silicon” and
cost-effectiveness of attached parallel processors has been producing hybrid
computing systems that incorporate multiple architectures. In the highly-con-
nected world we now live in, it also may be appropriate to consider architec-
tural targets that are literally “outside the box™ — targeting systems that are par-
tially local, but explicitly include remotely-accessed computing facilities. This
panel examines how parallel computer architectures are evolving with the goal
of suggesting appropriate future research directions for the LCPC community.

Keywords: Computer Architecture, Vector, SIMD, MIMD, GPU, FPGA,
Quantum Computing, Optimizing Compilers, and Parallelizing Compilers.

1 Introduction

This panel is bringing together ... to discuss the evolution of computer architecture.
The discussion is focused not on the architectures themselves, but on what the evolu-
tion of architectures means in terms of guiding directions for future research within
the LCPC community. Thus, the goal is to identify how language and compiler re-
search should be moving to best support coming generations of computer systems.
The panel discussion at LCPC (and this paper) begins with a brief introduction by
the moderator followed by ten-minute position presentations from each of the pan-
elists. Each panelist independently determines the content of their position presenta-
tion and submits a section for this paper after the workshop. To ensure collection of
opinions on some specific topics, the moderator prepared and distributed this “Intro-

duction” section of the paper before the workshop, giving three prompts to be ad-
dressed by each panelist. The conclusion is written by the moderator after the work-
shop, summarizing the discussion that followed the position presentations.

1.1 Efficiency-Critical Features

The world has grown to depend upon continuous, mostly exponential, performance
improvement over time for computer systems — but that would not happen if computer
architecture did not evolve. An efficiency-critical feature (ECF)[1] is any architectural
attribute of a computer system that must be used effectively in order to obtain good
performance. Major increments in system performance usually are enabled by intro-
duction of new ECFs. As computer architectures have evolved, ECFs have included:

e Bit-slicing and multiple-word-precision arithmetic

e Floating-point arithmetic

e General register files

e Support for subroutines, functions, and recursion

¢ Flat and structured memory address spaces and pointers

¢ Pipelined parallelism

e Vector parallelism and array processors

e SIMD (single instruction stream, multiple data stream) parallelism

e MIMD (multiple instruction stream, multiple data stream) parallelism
e Multithreading (originally known as barrel processing)

e Caches and memory hierarchy, coherence and consistency models

¢ Shared and distributed memory

e Atomicity, directed and barrier synchronization, and transactional memory
e VLIW (very long instruction word) and SuperScalar parallelism

¢ SWAR (SIMD within a register) parallelism

e Message passing and aggregate functions/collective communications
e DSPs (digital signal processors)

e GPUs (graphics processing units)

¢ FPGAs (field programmable gate arrays) and reconfigurable systems
¢ Dark silicon and advanced power management

¢ Quantum computing (entangled superposition is parallel processing)

The first few of the above ECFs (listed in ifalic) don’t necessarily involve parallel
processing, but all the others generally do. Parallel execution is behind most of the
performance increase that we have seen from computing systems over the last four
decades. No doubt, the future will see computers evolve to incorporate many more
ECFs, most involving parallel processing, that will require some level of language
and/or compiler support.

Thus, the first prompt given to the panelists is:

What current or emerging parallel computer ECFs most desperately
need new types of programming language and/or compiler analysis
and transformation support?

1.2 E Pluribus Unum: Out of Many, One

Although lots of different types of ECFs will be seen as architectures continue to
evolve, perhaps the strongest current trend is that systems do not have just one type of
parallelism, but incorporate multiple somewhat distinct subsystems or attached pro-
cessors each executing with different types of parallelism.

Given that different types of parallelism appear in different applications or portions
of applications, it makes sense that the best speedup from parallel execution will re-
sult from having hardware that efficiently supports a variety of types of parallelism.
Beyond that, there is the fact that some types of parallel architecture literally cannot
stand alone. For example, much of the efficiency of a GPU comes from omission of
hardware structures that would enable it to function as a fully general-purpose com-
puter. Even more dramatically, quantum computation achieves exponential amounts
of parallelism in operating on entangled superpositions (and uses quantum phenom-
ena rather than a multitude of hardware modules to implement that parallel execu-
tion), but an entangled superposition is a very fragile thing, and values cannot be held
for arbitrarily long periods of time — in sum, quantum computers currently implement
only relatively shallow combinatorial logic. Thus, every quantum computer is a very
special-purpose massively-parallel computing engine hosted and controlled by a con-
ventional computer. Even Shor’s famous “quantum algorithm” for finding the prime
factors of a number[2] is primarily executed on a conventional machine that repeat-
edly invokes a quantum order-finding subroutine to narrow the search space.

Nearly all modern computing systems, from embedded microcontrollers to super-
computers, now have architectures combining various types of parallel hardware
structures. At this writing, even microcontrollers costing just a few dollars contain
pipelined, superscalar, SWAR-supporting, multi-core processors, and often augment
that with a management processor on the same chip (typically an ultra-low-power
processor that handles tasks like waking the main system in response to sensor in-
puts). In larger systems, combining similar features with a GPU is probably most
common, and supercomputers tend to make distributed-memory MIMD systems with
that mix within each node.

The second prompt given to the panelists asks them to gaze deeply into their crys-
tal balls and answer:

What types of heterogeneous parallel architectures do you see becom-
ing the most important combinations for compilers to target within fu-
ture computing systems? Perhaps your answer differs for each class
of computers: embedded microcontrollers, smartphones and tablets,
laptop and desktop computers, servers, and supercomputers.

1.3 Everything Everywhere All at Once

As much as computer architecture has been evolving, a second effect has arguably
been even more dramatic: everything is becoming continuously connected.

Traditionally, programming languages and compilers tend to target a machine —
not a huge collection of loosely-connected systems. However, the concepts of Grid
and Cloud computing, IoT (internet of things), and especially Edge computing are
making the boundaries between computing systems increasingly unclear. For exam-
ple, a $7 ESP32 IoT boardlet not only provides a surprisingly capable dual-core com-
puter, but also provides both 802.11 Ethernet and Bluetooth wireless connectivity.
The smartphones that so many of us carry everywhere are even better connected, and
so are the computers on our desks and in our machine rooms.

Certainly, it is now common that programs are written in such a way that they triv-
ially can be moved from a local machine to a remote system. This is what the concept
known as Cloud Bursting is all about: moving an application to a cloud facility when
local resources are insufficient either due to machine configuration or high load. Au-
tomatically having a compiler determine which machine, or set of machines, in a het-
erogeneous collection of computers should run a program by taking both architecture
and current loading into account is an idea that the moderator worked on and crudely
prototyped as early as 1993[3] — but automation of this type of analysis and runtime
selection of targets has never become a common approach. Perhaps there are good
reasons both for and against taking such an approach...

This notion of everything connected motivates the third prompt:

Should the LCPC community, as language designers and compiler
writers, no longer be thinking only about targeting a machine, but
also about targeting the heterogeneous system that is only partly the

machine we have near us? If so, state what the main research chal-
lenges are; if not, explain why not.

2 Panelist: ...

A position statement contributed by each panelist...

5 Conclusion

To be written by the moderator after the panel.

References

1 Henry Dietz, “The Refined-Language Approach to Compiling for Parallel Supercomput-
ers,” Doctoral Dissertation, Polytechnic University, Brooklyn, New York (1987), ISBN
979-8-3684-1591-8

2 Ekert, Artur, and Richard Jozsa. "Quantum computation and Shor's factoring algorithm."
Reviews of Modern Physics 68, no. 3 (1996): 733.

3 H. G. Dietz, W. E. Cohen and B. K. Grant, "Would You Run it Here or There? AHS: Au-
tomatic Heterogeneous Supercomputing,”" 1993 International Conference on Parallel Pro-
cessing - ICPP'93, Syracuse, NY, USA, 1993, pp. 217-221, doi: 10.1109/ICPP.1993.187.

	1 Introduction
	1.1 Efficiency-Critical Features
	1.2 E Pluribus Unum: Out of Many, One
	1.3 Everything Everywhere All at Once

	2 Panelist: ...
	5 Conclusion
	References

