Al in Programming and Compilers

2[0000-0002-5878-88 1X]

Moderator: Henry Diet:
Panelists: AB Siddique, Aniket Shivam , P. Sadayappan

University of Kentucky, Lexington KY 40506, USA
hankd@engr.uky.edu

Abstract. Especially in the past year, it seems that Al (artificial intelligence)
has demonstrated the potential to augment or even obsolete a lot of the analysis
and methods that mankind has spent huge amounts of effort developing. In the
late 1980s, GP (genetic programming)[1] was proposed as a method to automat-
ically create programs, but the technique has not found broad application in the
programming language and compiler communities despite some impressive ac-
complishments in inventing human-competitive algorithms[2]. In contrast,
LLM (large language model)[3] tools like ChatGPT (chat generative pre-trained
transformer) seem to be able to synthesize well-structured textual responses to
arbitrary queries, including queries that require the system to write program
code. Even before that, neural networks and deep learning technology[4] had
begun to show that trained Al is capable of providing valuable insights into, or
even solving, a very broad range of complex problems. However, until recently,
Al techniques have not been widely used in optimizing/parallelizing compilers
and they still are not commonly used for writing programs. The panelists here
are asked to share some of their insights as to where these types of Al have real
potential and where perhaps they do not.

Keywords: Large Language Models, Generative Pre-trained Transformers,
Neural Networks, Deep Learning, Genetic Programming, Parallel Program-
ming, Optimizing Compilers, and Parallelizing Compilers.

1 Introduction

This panel is bringing together ... to explore the application of Al techniques to the
problems of writing and maintaining parallel programs and construction of better opti-
mizing/parallelizing compilers.

The panel discussion at LCPC (and this paper) begins with a brief introduction by
the moderator followed by ten-minute position presentations from each of the pan-
elists. Each panelist independently determines the content of their position presenta-
tion and submits a section for this paper after the workshop. To ensure collection of
opinions on some specific topics, the moderator prepared and distributed this “Intro-
duction” section of the paper before the workshop, giving three prompts to be ad-
dressed by each panelist. The conclusion is written by the moderator after the work-
shop, summarizing the discussion that followed the position presentations.



1.1 AI Writing Parallel Programs

When the moderator entered the parallel processing field in the late 1970s, he saw
a strong consensus that parallel programming would soon become a standard skill ex-
pected of all people who program computers. Well, that has not yet happened. Parallel
programming is hard, and as complexity of both applications and parallel computer
systems have grown much larger, parallel programming has arguably become even
more difficult.

Does the ability of AI methods to write programs mean that perhaps the answer to
the elusive goal of making everyone competent in producing parallel programs is to
not have the humans write programs at all, but merely to have humans describe the
desired behavior and have Al tools create the parallel program? Certainly, many peo-
ple have been suggesting that LLMs have this potential, however, at the same time
there is the understanding that LLMs have no underlying model for the meaning of
the code they emit. In fact, it could be argued that as code authors, LLMs are little
more than sophisticated automation for plagiarism of existing documents in their
training set. However, there are other Al methods, such as GP, which are documented
as being able to invent new algorithms[2], and perhaps methods combined will vastly
outperform any method alone? Perhaps simply limiting the scope of applications is
sufficient for LLMs to write good code[5]? Unfortunately, LLMs also are well know
to be prone to “hallucination,” and that makes their output difficult to trust from a cor-
rectness perspective.

Ironically, even if LLMs fail to write trustworthy code, there is a large and growing
community that sees them as useful in the program lifecycle especially for testing and
debugging[6][7][8][9]. This utility is largely rooted in the LLM ability to explain code
and to generate test cases. It is useful to note that debugging parallel programs is gen-
erally much more difficult than debugging serial programs because program state is
more complex and less observable, so more effective debugging methods are poten-
tially very valuable.

Thus, the first prompt given to the panelists is:

Perhaps AI will mean programs are written by giving a prompt in
English and current programming languages will become like assem-
bly language is treated now, or perhaps Al tools will simply help with
identifying algorithms or debugging code. How do you see AI meth-
ods being used in parallel programming?

1.2 Al in Compiler Optimization and Parallelization

Just as writing parallel code is hard for humans, it can be very difficult for humans to
create highly efficient optimization and parallelization methods. As far back as 1987,
the Superoptimizer[10] tried to help by using a pruned exhaustive search to find opti-
mal sequences of machine instructions for simple operations like absolute value or in-
teger multiplication by a constant. Al methods have the potential to much more dra-



matically focus the search space, perhaps making it possible to generate better code
for much more complex program fragments.

Optimizing and parallelizing compilers generally contain a large number of “cor-
rectness preserving” optimization and parallelization transformations, some of which
take multiple tuning parameters. Selection of which transformations to execute in
what order and with what parameter values is a very complex problem, and the rela-
tionship between these decisions and efficiency of execution on a particular target
machine is very opaque. Perhaps Al methods can learn how to make better adjust-
ments for a particular target architecture?

The second prompt is about use of Al in compilers themselves:

How do you see AI methods being used within optimizing, paralleliz-
ing, compilers? Please give a brief example or two and explain for
each if Al is augmenting or replacing other compiler methods.

1.2 Which Al

Although Al has been a field for many years, it is only relatively recently that some
Al methods have become mainstream technologies for solving specific types of prob-
lems. For example, the base concepts of neural networks were around for many
decades before meeting wide acceptance and common use. The moderator first heard
of neural networks by the name “multi-valued logic,” years later again as “fuzzy
logic,” more years later as “neural networks,” and now most often as “deep learning”
— with various significant differences. The key point is that this approach was not of
great value until implementation of training methods (using parallel computers and
software like TensorFlow[11]) became strong enough to deal with training large net-
works with huge data sets. Other Al techniques are maturing too. As they mature, we
develop a better understanding of the kinds of problems each can and cannot solve.
The third and final prompt for the panelists is simply:

There are a lot of different AI methods, algorithms, and tools out

there. Which are the ones that every optimizing/parallelizing compiler
writer should be familiar with? For each, briefly explain why.

2 Panelist: ...

Position statement contributed by each panelist...

5 Conclusion

To be written by the moderator after the panel.



References

11

Koza, J.R., “Genetic Programming: A Paradigm for Genetically Breeding Populations of
Computer Programs to Solve Problems,” Stanford University Computer Science Depart-
ment technical report STAN-CS-90-1314, (1990), http://www.genetic-programming.com/
jkpdfitr1314.pdf

Koza, J.R.; Keane, M.A.; Streeter, M.J.; Mydlowec, W.; Yu, J.; & Lanza, G. (2003). Ge-
netic Programming IV: Routine Human-Competitive Machine Intelligence, Springer.
ISBN 1-4020-7446-8

Chang, Yupeng, Xu Wang, Jindong Wang, Yuan Wu, Kaijie Zhu, Hao Chen, Linyi Yang
et al. "A survey on evaluation of large language models." arXiv preprint arXiv:2307.03109
(2023).

Schmidhuber, Jiirgen. "Deep learning in neural networks: An overview." Neural networks
61 (2015): 85-117.

Kashefi, Ali, and Tapan Mukerji. "Chatgpt for programming numerical methods." Journal
of Machine Learning for Modeling and Computing 4, no. 2 (2023).

Biswas, Som. "Role of ChatGPT in Computer Programming.: ChatGPT in Computer Pro-
gramming." Mesopotamian Journal of Computer Science 2023 (2023): 8-16.

Surameery, Nigar M. Shafiq, and Mohammed Y. Shakor. "Use chat gpt to solve program-
ming bugs." International Journal of Information Technology & Computer Engineering
(IJITC) ISSN: 2455-5290 3, no. 01 (2023): 17-22.

Liu, Yue, Thanh Le-Cong, Ratnadira Widyasari, Chakkrit Tantithamthavorn, Li Li, Xuan-
Bach D. Le, and David Lo. "Refining ChatGPT-Generated Code: Characterizing and Miti-
gating Code Quality Issues." arXiv preprint arXiv:2307.12596 (2023).

Tian, Haoye, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques Klein, and
Tegawendé F. Bissyandé. "Is ChatGPT the Ultimate Programming Assistant--How far is
it?." arXiv preprint arXiv:2304.11938 (2023).

Massalin, Henry. "Superoptimizer: a look at the smallest program." ACM SIGARCH
Computer Architecture News 15, no. 5 (1987): 122-126.

Abadi, Martin. "TensorFlow: learning functions at scale." In Proceedings of the 21st ACM
SIGPLAN international conference on functional programming, pp. 1-1. 2016.


http://www.genetic-programming.com/jkpdf/tr1314.pdf
http://www.genetic-programming.com/jkpdf/tr1314.pdf

	1 Introduction
	1.1 AI Writing Parallel Programs
	1.2 AI in Compiler Optimization and Parallelization

	2 Panelist: ...
	5 Conclusion
	References

